Расчет тепловой нагрузки на отопление, расчетный показатель, все измерения своими руками: инструкция, фото и видео-уроки, цена

Способы расчета тепловой нагрузки на отопление

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

  • Характеристики каждого элемента конструкции строения. Система вентиляции существенно влияет на потери теплоэнергии.
  • Размеры здания. Необходимо учитывать как объем всех помещений, так и площадь окон конструкций и наружных стен.
  • Климатическая зона. Показатель максимальной часовой нагрузки зависит от температурных колебаний окружающего воздуха.

Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить оптимальные температурные режимы работы системы обогрева для каждого помещения.

Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

Это самый простой способ расчета, но он имеет один серьезный недостаток — погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

Qот = q0*a*Vн*(tвн — tнро),

где q0 — удельная тепловая характеристика строения;

a — поправочный коэффициент;

Vн — наружный объем строения;

tвн, tнро — значения температуры внутри дома и на улице.

В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

  • Тепловая характеристика здания — 0,49 Вт/м³*С.
  • Уточняющий коэффициент — 1.
  • Оптимальный температурный показатель внутри здания — 22 градуса.

Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу — Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким — Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

  • Оптимальные температурные параметры в помещениях.
  • Общую площадь строения.
  • Температуру воздуха на улице.

Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания — пол, стены, а также потолок.

Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой — R=d/λ.

Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем — по вентиляции. В качестве примера можно взять следующие характеристики строения:

  • Площадь и толщина стен — 290 м² и 0,4 м.
  • В строении находятся окна (двойной стеклопакет с аргоном) — 45 м² (R =0,76 м²*С/Вт).
  • Стены изготовлены из полнотелого кирпича — λ=0,56.
  • Здание было утеплено пенополистиролом — d =110 мм, λ=0,036.

Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен — R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя — R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель — R общ =0,71+3,05= 3,76 м²*С/Вт.

Фактические теплопотери стен составят — (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой — 125,15*(22+15)= 4,63 кВт/час.

На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу — 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы — (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, — 4,63+1,27=5,9 кВт/час.

Результат будет максимально точным, если учитывать потери через пол и крышу. Сложные вычисления здесь проводить необязательно, допускается использование уточняющего коэффициента. Процесс расчетов теплонагрузки на систему обогрева отличается высокой сложностью. Однако его можно упростить с помощью программы VALTEC.

Расчет тепловой нагрузки на отопление и смежных величин

Как вычисляется расчетная тепловая нагрузка на отопление? Какие факторы влияют на потребность дома в тепловой энергии? Каким образом подобрать отопительные приборы оптимальной мощности? В статье мы постараемся ответить на эти и некоторые другие вопросы.

Распределение теплопотерь частного дома.

Проще, еще проще

Сразу оговорим один нюанс: эта статья ориентирована на владельцев частных домов и квартир с автономным отоплением. Методики расчетов систем отопления многоквартирных зданий довольно сложны и должны учитывать массу факторов: работу вентиляции, розу ветров, степень инсоляции здания и многое другое.

В случае же, когда речь идет об отоплении одного небольшого дома, тепловую мощность проще подобрать с определенным запасом. Цена нескольких дополнительных секций батареи едва ли покажется разорительной на фоне общей стоимости строительства.

Эксплуатационные расходы же при должной организации не увеличатся вовсе: термостаты и дроссели ограничат тепловую мощность в теплые дни, когда она не будет востребованной.

Итак: наша цель – научиться выполнять расчет нагрузки на отопление максимально простыми и понятными неспециалисту способами.

Что считаем

Нам предстоит научиться рассчитывать:

  • Общую тепловую мощность (суммарную мощность отопительных приборов, а в случае автономной системы – еще и мощность котла).
  • Мощность отдельного отопительного прибора в отдельно взятом помещении.

Кроме того, мы затронем несколько смежных величин:

Закрытая автономная система не будет работать без расширительного бака.

  • Подбор производительности циркуляционного насоса.
  • Выбор оптимального диаметра розлива.

Общая тепловая мощность

По площади

СНиПы полувековой давности предлагают простейшую схему расчета, которой многие пользуются по сей день: на 1 квадратный метр площади отапливаемого помещения берется 100 ватт тепла. На дом площадью 100 квадратов нужно 10 КВт. Точка.

Просто, понятно и… слишком неточно.

  1. СНиПы разрабатывались для многоквартирных домов. Утечки тепла в квартире, окруженной отапливаемыми помещениями, и в частном доме с ледяным воздухом за стенами несопоставимы.
  2. Расчет верен для квартир с высотой потолка 2,5 метра. Более высокий потолок увеличит объем помещения, а, стало быть, и затраты тепла.

Отапливать квадратный метр площади в этом доме явно труднее, чем в хрущевке.

  1. Через окна и двери теряется куда больше тепловой энергии, чем через стены.
  2. Наконец, будет логичным предположить, что потери тепла в Сочи и Якутске будут сильно различаться. Увеличение дельты температур между помещением и улицей в два раза увеличит затраты тепла на отопление ровно вдвое. Физика, однако.

По объему

Для помещений с нормированным тепловым сопротивлением ограждающих конструкций (для Москвы – 3,19 м2*С/Вт) можно использовать расчет тепловой мощности по объему помещения.

  • На кубометр отапливаемого объема квартиры берется 40 ватт тепла. На кубометр объема частного дома без общих стен с соседними отапливаемыми строениями – 60.

Для таунхаусов и квартир на крайних этажах берутся промежуточные значения.

  • На каждое окно к базовому значению добавляется 100 ватт тепловой энергии. На каждую ведущую на улицу дверь – 200.
  • Полученная мощность умножается на региональный коэффициент:
РегионКоэффициент
Краснодар, Крым0,7-0,9
Ленинградская и Московская области1,2-1,3
Сибирь, Дальний Восток1,5-1,6
Чукотка, Якутия2,0

Давайте еще раз рассчитаем потребность в тепловой мощности отопления для дома площадью 100 квадратов, однако теперь конкретизируем задачу:

ПараметрЗначение
Высота потолков3,2 м
Количество окон8
Количество ведущих на улицу дверей2
РасположениеГ. Тында (средняя температура января – -28С)

  1. Высота потолков в 3,2 метра даст нам внутренний объем дома в 3,2*100=320 м3.
  2. Базовая тепловая мощность составит 320*60=19200 ватт.
  3. Окна и двери внесут свою лепту: 19200+(100*8)+(200*2)=20400 ватт.
  4. Бодрящий холод января заставит нас использовать климатический коэффициент 1,7. 20400*1,7=34640 ватт.

Как нетрудно заметить, разница с расчетом по первой схеме не просто велика – она разительна.

Что делать, если качество утепления дома существенно лучше или хуже, чем предписывает СНиП “Тепловая защита зданий”?

По объему и коэффициенту утепления

Инструкция для этой ситуации сводится к использования формулы вида Q=V*Dt*K/860, в которой:

  • Q – заветный показатель тепловой мощности в киловаттах.
  • V – Объем отапливаемого помещения.
  • Dt -дельта температур между помещением и улицей в пик холодов.
  • K – коэффициент, зависящий от степени утепления здания.

Дом из sip-панелей явно будет терять меньше тепла, чем кирпичный.

Две переменных требуют отдельных комментариев.

Дельта температур берется между предписанной СНиП температурой жилого помещения (+18 для регионов с нижней границей зимних холодов до -31С и +20 – для зон с более сильными морозами) и средним минимумом наиболее холодного месяца. Ориентироваться на абсолютный минимум не стоит: рекордные холода редки и, простите за невольный каламбур, погоды не делают.

Коэффициент утепления можно вывести аппроксимацией данных из следующей таблицы:

Коэффициент утепленияОграждающие конструкции
0,6 – 0,9Пенопластовая или минераловатная шуба, утепленная кровля, энергосберегающие тройные стеклопакеты
1,-1,9Кладка в полтора кирпича, однокамерные стеклопакеты
2 – 2,9Кладка в кирпич, окна в деревянных рамах без утепления
3-4Кладка в полкирпича, остекление в одну нитку

Давайте еще раз выполним расчет тепловых нагрузок на отопление для нашего дома в Тынде, уточнив, что он утеплен пенопластовой шубой толщиной 150 мм и защищен от непогоды окнами с тройными стеклопакетами.

Собственно, иначе современные дома в условиях Крайнего Севера не строятся.

Жители северных регионов страны вынуждены очень серьезно относиться к утеплению дома.

  1. Температуру внутри дома примем равной +20 С.
  2. Средний минимум января услужливо подскажет общеизвестная интернет-энциклопедия. Он равен -33С.
  3. Таким образом, Dt=53 градуса.
  4. Коэффициент утепления возьмем равным 0,7: описанное нами утепление близко к верхней границе эффективности.

Q=320*53*0,7/860=13,8 КВт. Именно на это значение и стоит ориентироваться при выборе котла.

Подбор мощности отопительного прибора

Как вычислить тепловую нагрузку на участок контура, соответствующий отдельно взятому помещению?

Проще простого: выполнив расчет по одной из приведенных выше схем, но уже для объема комнаты. Скажем, на комнату площадью 10 м2 будет приходиться ровно 1/10 общей тепловой мощности; согласно расчету по последней схеме она равна 1380 ватт.

Как подобрать отопительный прибор с нужными характеристиками?

В общем случае – просто-напросто изучив документацию на присмотренный вами радиатор или конвектор. Производители обычно указывают значение теплового потока для отдельной секции или всего прибора.

Параметры некоторых биметаллических секционных радиаторов.

Нюанс: тепловой поток обычно указывается для 70-градусной дельты температур между теплоносителем и воздухом в комнате.
Уменьшение этой дельты вдвое повлечет за собой двукратное падение мощности.

Если в силу каких-то причин документация и сайт производителя недоступны, можно ориентироваться на следующие средние значения:

Тип секционного радиатораТепловой поток на одну секцию, ватты
Чугунный140-160
Биметаллический (сталь и алюминий)180
Алюминиевый200

Отдельно стоит оговорить расчет теплоотдачи регистра.

Для горизонтальной трубы круглого сечения она рассчитывается по формуле Q=Pi*Dн*L*k*Dt, в которой:

  • Q – тепловая мощность в ваттах;
  • Pi – число “пи”, принимаемое равным 3,1415;
  • Dн – наружный диаметр секции регистра в метрах.
  • L – длина трубы в метрах.
  • k – коэффициент теплопроводности, который для стальной трубы берется равным 11,63 Вт/м2*С;
  • Dt – дельта температур между теплоносителем и воздухом в комнате.

Типичный регистр состоит из нескольких секций. При этом все они, кроме первой, находятся в восходящем потоке теплого воздуха, что уменьшает параметр Dt и прямо влияет на теплоотдачу. Именно поэтому для второй и прочих секций используется дополнительный коэффициент 0,9.

Сопроводим примером и этот расчет.

Давайте вычислим тепловую мощность четырехсекционного регистра длиной три метра, выполненного из трубы с наружным диаметром 208 мм, при температуре теплоносителя 70 градусов и температуре воздуха в комнате 20 градусов.

Читайте также:  Как рассчитать мощность газового котла: коэффициент рассеивания и другие параметры, видео и фото

Четырехрядный отопительный регистр.

  1. Мощность первой секции составит 3,1415*0,208*3*11,63*50=1140 ватт (с округлением до целого числа).
  2. Мощность второй и прочих секций равна 1140*0,9=1026 ватт.
  3. Полная тепловая мощность регистра – 1140+(1026*3)=4218 ватт.

Объем расширительного бака

Это один из параметров, нуждающихся в расчете в автономной отопительной системе. Расширительный бак должен вместить избыток теплоносителя при его температурном расширении. Цена его недостаточного объема – постоянное срабатывание предохранительного клапана.

Однако: завышенный объем бачка никаких негативных последствий не имеет.

В простейшем варианте расчета бак берется равным 10% общего количества теплоносителя в контуре. Как узнать количество теплоносителя?

Вот пара простых решений:

  • Система заполняется водой, после чего та сливается в любую мерную посуду.
  • Кроме того, в сбалансированной системе объем теплоносителя в литрах примерно равен 13-кратной мощности котла в киловаттах.

Мощность котла должна соответствовать количеству теплоносителя.

Более сложная (но и дающая более точный результат) формула расчета бачка выглядит так:

  • V – искомый объем бака в литрах.
  • Vt – объем теплоносителя в литрах.
  • Е – коэффициент расширения теплоносителя при максимальной рабочей температуре контура.
  • D – коэффициент эффективности бака.

И в этом случае пара параметров нуждается в комментариях.

Коэффициент расширения воды, которая чаще всего выступает в качестве теплоносителя, при нагреве с исходной температуры в +10С можно взять из следующей таблицы:

Нагрев, СРасширение, %
300,75
401,18
501,68
602,25
702,89
803,58
904,34
1005,16

Полезно: водно-гликолевые смеси, использующиеся в качестве антифризов для отопительных контуров, расширяются при нагреве несколько сильнее.
Разница достигает 0,45% при нагреве на 100 градусов 30-процентного раствора гликоля.

На фото – антифриз для системы отопления.

Коэффициент эффективности расширительного бачка вычисляется по следующей формуле: D = (Pv – Ps) / (Pv + 1).

  • Pv – максимально допустимое рабочее давление в контуре. На него выставляется срабатывание предохранительного клапана. Как правило, оно выбирается равным 2,5 атмосферы.
  • Ps – давление зарядки бака. Оно обычно соответствует высоте водяного столба в контуре над баком. Скажем, в системе отопления, где верх радиаторов на втором этаже возвышается над баком, смонтированным в подвале, на 5 метров, бак заряжается давлением в 0,5 атмосферы (что соответствует пятиметровому напору).

Давайте в качестве примера выполним своими руками расчет бачка для следующих условий:

  • Объем теплоносителя в контуре равен 400 литрам.
  • Теплоноситель – вода, нагреваемая котлом с 10 до 70 градусов.
  • Предохранительный клапан выставлен на 2,5 кгс/см2.
  • Расширительный бак накачан воздухом до давления в 0,5 кгс/см2.
  1. Коэффициент эффективности бака равен (2,5-0,5)/(2,5+1)=0,57.

Вместо расчета коэффициент эффективности бака можно взять из таблицы.

  1. Коэффициент расширения воды при нагреве на 60 градусов равен 2,25%, или 0,0225.
  2. Бак должен иметь минимальный объем в 400*0,0225/0,57=16 (с округлением до ближайшего значения из линейки размеров бачков) литров.

Насос

Как подобрать оптимальный напор и производительность насоса?

С напором все просто. Минимального его значения в 2 метра (0,2 кгс/см2) достаточно для контура любой разумной протяженности.

Справка: система отопления многоквартирного дома функционирует при перепаде между смесью и обраткой именно в два метра.

Перепад между смесью (справа вверху) и обраткой (внизу) регистрируется не всяким манометром.

Производительность может быть рассчитана по простейшей схеме: весь объем контура должен оборачиваться трижды за час. Так, для приведенного нами выше количества теплоносителя в 400 литров разумный минимум производительности циркуляционного насоса отопительной системы при рабочем напоре должен быть равен 0,4*3=1,2 м3/час.

Для отдельных участков контура, снабжающихся собственным насосом, его производительность может быть рассчитана по формуле G=Q/(1,163*Dt).

  • G – заветное значение производительности в кубометрах в час.
  • Q – тепловая мощность участка системы отопления в киловаттах.
  • 1,163 – константа, средняя теплоемкость воды.
  • Dt – разница температур между подающим и обратным трубопроводами в градусах по шкале Цельсия.

Подсказка: в автономных системах она обычно берется равной 20 градусам.

Так, для контура с тепловой мощностью в 5 киловатт при 20-градусной дельте между подачей и обраткой нужен насос с производительностью не менее 5/(1,163*20)=0,214 м3/час.

Параметры насоса обычно указываются в его маркировке.

Диаметр труб

Как подобрать оптимальный диаметр розлива в контуре с известной тепловой мощностью?

Здесь поможет формула D=354*(0,86*Q/Dt)/v.

  • D – внутренний диаметр трубы в сантиметрах.
  • Q – тепловая мощность контура в киловаттах.
  • Dt – дельта температур между подачей и обратным трубопроводом. Напомним, что типичное значение Dt для автономной отопительной системы – 20 С.
  • v – скорость потока. Диапазон ее значений – от 0,6 до 1,5 м/с. При более низкой скорости растет разница температур между первыми и последними радиаторами в контуре; при более высокой – становятся заметными гидравлические шумы.

Давайте вычислим минимальный диаметр для пресловутого контура мощностью 5 КВт при скорости воды в трубах, равной 1 м/с.

D=354*(0,86*5/20)/1=4,04 мм. С практической стороны это означает, что можно брать трубы минимально доступного размера и не бояться медленной циркуляции в них.

Не забудьте, что нами рассчитан внутренний диаметр. Пластиковые трубы маркируются наружным.

Заключение

Надеемся, что обилие формул и сухих цифр не утомило уважаемого читателя. Как обычно, прикрепленное видео предложит его вниманию дополнительную тематическую информацию. Успехов!

Как рассчитывается тепловая нагрузка на систему отопления здания

Предположим, вам захотелось самостоятельно подобрать котел, радиаторы и трубы отопительной системы частного дома. Задача №1 – сделать расчет тепловой нагрузки на отопление, проще говоря, определить общий расход теплоты, необходимой для прогрева здания до комфортной температуры внутри помещений. Предлагаем изучить 3 расчетных методики – разные по сложности и точности результатов.

Способы определения нагрузки

Сначала поясним значение термина. Тепловая нагрузка – это общее количество теплоты, расходуемое системой отопления на обогрев помещений до нормативной температуры в наиболее холодный период. Величина исчисляется единицами энергии – киловаттами, килокалориями (реже – килоджоулями) и обозначается в формулах латинской буквой Q.

Зная нагрузку на отопление частного дома в целом и потребность каждого помещения в частности, нетрудно подобрать котел, обогреватели и батареи водяной системы по мощности. Как можно рассчитать данный параметр:

  1. Если высота потолков не достигает 3 м, производится укрупненный расчет по площади отапливаемых комнат.
  2. При высоте перекрытий 3 м и более расход тепла считается по объему помещений.
  3. Определение теплопотерь через внешние ограждения и затрат на подогрев вентиляционного воздуха согласно СНиП.

Примечание. В последние годы широкую популярность обрели онлайн-калькуляторы, размещаемые на страницах различных интернет-ресурсов. С их помощью определение количества тепловой энергии выполняется быстро и не требует дополнительных инструкций. Минус – достоверность результатов нужно проверять, ведь программы пишут люди, не являющиеся теплотехниками.

Две первые расчетные методики основаны на применении удельной тепловой характеристики по отношению к обогреваемой площади либо объему здания. Алгоритм простой, используется повсеместно, но дает весьма приближенные результаты и не учитывает степень утепления коттеджа.

Считать расход тепловой энергии по СНиП, как делают инженеры–проектировщики, гораздо сложнее. Придется собрать множество справочных данных и потрудиться над вычислениями, зато конечные цифры отразят реальную картину с точностью 95%. Мы постараемся упростить методику и сделать расчет нагрузки на отопление максимально доступным для понимания.

Для примера – проект одноэтажного дома 100 м²

Чтобы доходчиво пояснить все способы определения количества тепловой энергии, предлагаем взять в качестве примера одноэтажный дом общей площадью 100 квадратов (по наружному обмеру), показанный на чертеже. Перечислим технические характеристики здания:

  • регион постройки – полоса умеренного климата (Минск, Москва);
  • толщина внешних ограждений – 38 см, материал – силикатный кирпич;
  • наружное утепление стен – пенопласт толщиной 100 мм, плотность – 25 кг/м³;
  • полы – бетонные на грунте, подвал отсутствует;
  • перекрытие – ж/б плиты, утепленные со стороны холодного чердака пенопластом 10 см;
  • окна – стандартные металлопластиковые на 2 стекла, размер – 1500 х 1570 мм (h);
  • входная дверь – металлическая 100 х 200 см, изнутри утеплена экструдированным пенополистиролом 20 мм.

В коттедже устроены межкомнатные перегородки в полкирпича (12 см), котельная располагается в отдельно стоящей постройке. Площади комнат обозначены на чертеже, высоту потолков будем принимать в зависимости от поясняемой расчетной методики – 2.8 либо 3 м.

Считаем расход теплоты по квадратуре

Для приблизительной прикидки отопительной нагрузки обычно используется простейший тепловой расчет: берется площадь здания по наружному обмеру и умножается на 100 Вт. Соответственно, потребление тепла дачным домиком 100 м² составит 10000 Вт или 10 кВт. Результат позволяет подобрать котел с коэффициентом запаса 1.2—1.3, в данном случае мощность агрегата принимается равной 12.5 кВт.

Мы предлагаем выполнить более точные вычисления, учитывающие расположение комнат, количество окон и регион застройки. Итак, при высоте потолков до 3 м рекомендуется использовать следующую формулу:

Расчет ведется для каждого помещения отдельно, затем результаты суммируются и умножаются на региональный коэффициент. Расшифровка обозначений формулы:

  • Q – искомая величина нагрузки, Вт;
  • Sпом – квадратура комнаты, м²;
  • q – показатель удельной тепловой характеристики, отнесенный к площади помещения, Вт/м²;
  • k – коэффициент, учитывающий климат в районе проживания.

Для справки. Если частный дом расположен в полосе умеренного климата, коэффициент k принимается равным единице. В южных регионах k = 0.7, в северных применяются значения 1.5—2.

В приближенном подсчете по общей квадратуре показатель q = 100 Вт/м². Подобный подход не учитывает расположение комнат и разное количество световых проемов. Коридор, находящийся внутри коттеджа, потеряет гораздо меньше тепла, чем угловая спальня с окнами той же площади. Мы предлагаем принимать величину удельной тепловой характеристики q следующим образом:

  • для помещений с одной наружной стеной и окном (или дверью) q = 100 Вт/м²;
  • угловые комнаты с одним световым проемом – 120 Вт/м²;
  • то же, с двумя окнами – 130 Вт/м².

Как правильно подбирать значение q, наглядно показано на плане здания. Для нашего примера расчет выглядит так:

Q = (15.75 х 130 + 21 х 120 + 5 х 100 + 7 х 100 + 6 х 100 + 15.75 х 130 + 21 х 120) х 1 = 10935 Вт ≈ 11 кВт.

Как видите, уточненные вычисления дали другой результат – по факту на отопление конкретного домика 100 м² израсходуется на 1 кВт тепловой энергии больше. Цифра учитывает расход теплоты на подогрев наружного воздуха, проникающего в жилище сквозь проемы и стены (инфильтрацию).

Вычисление тепловой нагрузки по объему комнат

Когда расстояние между полами и потолком достигает 3 м и более, предыдущий вариант расчета использовать нельзя – результат выйдет некорректным. В подобных случаях отопительную нагрузку принято считать по удельным укрупненным показателям расхода теплоты на 1 м³ объема помещения.

Формула и алгоритм вычислений остаются прежними, только параметр площади S меняется на объем – V:

Соответственно, принимается другой показатель удельного расхода q, отнесенный к кубатуре каждого помещения:

  • комната внутри здания либо с одной внешней стеной и окном – 35 Вт/м³;
  • помещение угловое с одним окном – 40 Вт/м³;
  • то же, с двумя световыми проемами – 45 Вт/м³.

Примечание. Повышающие и понижающие региональные коэффициенты k применяются в формуле без изменений.

Теперь для примера определим нагрузку на отопление нашего коттеджа, взяв высоту потолков равной 3 м:

Q = (47.25 х 45 + 63 х 40 + 15 х 35 + 21 х 35 + 18 х 35 + 47.25 х 45 + 63 х 40) х 1 = 11182 Вт ≈ 11.2 кВт.

Заметно, что требуемая тепловая мощность системы отопления выросла на 200 Вт по сравнению с предыдущим расчетом. Если же принять высоту комнат 2.7—2.8 м и сосчитать затраты энергии через кубатуру, то цифры получатся примерно одинаковые. То есть, способ вполне применим для укрупненного подсчета теплопотерь в помещениях любой высоты.

Расчетный алгоритм согласно СНиП

Данный способ – наиболее точный из всех существующих. Если вы воспользуетесь нашей инструкцией и правильно выполните расчет, можете быть уверены в результате на 100% и спокойно подбирать отопительное оборудование. Порядок действий выглядит так:

  1. Измерьте квадратуру внешних стен, полов и перекрытий отдельно в каждой комнате. Определите площадь окон и входных дверей.
  2. Рассчитайте тепловые потери через все наружные ограждения.
  3. Узнайте расход тепловой энергии, идущей на подогрев вентиляционного (инфильтрационного) воздуха.
  4. Суммируйте результаты и получайте реальный показатель тепловой нагрузки.

Обмер жилых комнат изнутри

Важный момент. В двухэтажном коттедже внутренние перекрытия не учитываются, поскольку не граничат с окружающей средой.

Суть расчета тепловых потерь относительно проста: нужно выяснить, сколько энергии теряет каждый тип строительной конструкции, ведь окна, стенки и полы сделаны из разных материалов. Определяя квадратуру наружных стен, вычитайте площадь остекленных проемов — последние пропускают больший тепловой поток и потому считаются отдельно.

При замере ширины комнат прибавляйте к ней половину толщины внутренней перегородки и захватывайте наружный угол, как показано на схеме. Цель – учесть полную квадратуру внешнего ограждения, теряющего тепло по всей поверхности.

При замерах нужно захватывать угол постройки и половину внутренней перегородки

Определяем теплопотери стен и крыши

Формула расчета теплового потока, проходящего через конструкцию одного типа (например, стену), выглядит следующим образом:

  • величину теплопотерь через одно ограждение мы обозначили Qi, Вт;
  • А – квадратура стенки в пределах одного помещения, м²;
  • tв – комфортная температура внутри комнаты, обычно принимается +22 °С;
  • tн – минимальная температура уличного воздуха, которая держится в течение 5 самых холодных зимних дней (принимайте реальное значение для вашей местности);
  • R – сопротивление толщи наружного ограждения передаче тепла, м²°С/Вт.

Коэффициенты теплопроводности для некоторых распространенных стройматериалов

В приведенном списке остается один неопределенный параметр – R. Его значение зависит от материала стеновой конструкции и толщины ограждения. Чтобы рассчитать сопротивление теплопередаче, действуйте в таком порядке:

  1. Определите толщину несущей части внешней стены и отдельно — слоя утеплителя. Буквенное обозначение в формулах – δ, считается в метрах.
  2. Узнайте из справочных таблиц коэффициенты теплопроводности конструктивных материалов λ, единицы измерения — Вт/(мºС).
  3. Поочередно подставьте найденные величины в формулу:
  4. Определите R для каждого слоя стены по отдельности, результаты сложите, после чего используйте в первой формуле.

Вычисления повторите отдельно для окон, стен и перекрытия в пределах одной комнаты, затем переходите в следующее помещение. Потери теплоты через полы считаются отдельно, о чем рассказано ниже.

Совет. Правильные коэффициенты теплопроводности различных материалов указаны в нормативной документации. Для России это Свод Правил СП 50.13330.2012, для Украины — ДБН В.2.6–31

2006. Внимание! В расчетах используйте значение λ, прописанные в столбце «Б» для условий эксплуатации.

Читайте также:  Расчет расширительного бака для отопления: как сделать своими руками, инструкция, фото и видео-уроки

Пример расчета для гостиной нашего одноэтажного дома (высота потолков 3 м):

  1. Площадь наружных стен вместе с окнами: (5.04 + 4.04) х 3 = 27.24 м². Квадратура окон – 1.5 х 1.57 х 2 = 4.71 м². Чистая площадь ограждения: 27.24 – 4.71 = 22.53 м².
  2. Теплопроводность λ для кладки силикатного кирпича равна 0.87 Вт/(мºС), пенопласта 25 кг/м³ – 0.044 Вт/(мºС). Толщина – соответственно 0.38 и 0.1 м, считаем сопротивление теплопередаче: R = 0.38 / 0.87 + 0.1 / 0.044 = 2.71 м²°С/Вт.
  3. Температура наружная – минус 25 °С, внутри гостиной – плюс 22 °С. Разность составит 25 + 22 = 47 °С.
  4. Определяем теплопотери сквозь стенки гостиной: Q = 1 / 2.71 х 47 х 22.53 = 391 Вт.

Стена коттеджа в разрезе

Аналогичным образом считается тепловой поток через окна и перекрытие. Термическое сопротивление светопрозрачных конструкций обычно указывает производитель, характеристики ж/б перекрытия толщиной 22 см находим в нормативной либо справочной литературе:

  1. R утепленного перекрытия = 0.22 / 2.04 + 0.1 / 0.044 = 2.38 м²°С/Вт, теплопотери сквозь кровлю – 1 / 2.38 х 47 х 5.04 х 4.04 = 402 Вт.
  2. Потери сквозь оконные проемы: Q = 0.32 x 47 x71 = 70.8 Вт.

Таблица коэффициентов теплопроводности металлопластиковых окон. Мы взяли самый скромный однокамерный стеклопакет (k = 0.32 Вт/(м•°С)

Итого теплопотери в гостиной (исключая полы) составят 391 + 402 + 70.8 = 863.8 Вт. Аналогичные подсчеты ведутся по остальным комнатам, результаты суммируются.

Обратите внимание: коридор внутри здания не соприкасается с наружной оболочкой и теряет тепло только через крышу и полы. Какие ограждения нужно учитывать в расчетной методике, смотрите на видео.

Расчет тепловых нагрузок на отопление, методика и формула расчета

Тепловые нагрузки систем теплоснабжения

  • нагрузку на конструкцию теплоснабжения;
  • нагрузку на систему обогрева пола, если она планируется к установке в доме;
  • нагрузку на систему естественной и/или принудительной вентиляции;
  • нагрузку на систему горячего водоснабжения;
  • нагрузку, связанную с различными технологическими нуждами.

Характеристики объекта для расчета тепловых нагрузок

  • назначение и тип объекта недвижимости. Для расчета важно знать, какое здание будет обогреваться – жилой или нежилой дом, квартира (прочитайте также: “Квартирный прибор учета тепловой энергии”). От типа постройки зависит норма нагрузки, определяемая компаниями, поставляющими тепло, а, соответственно, расходы на теплоснабжение;
  • архитектурные особенности. Во внимание принимаются габариты таких наружных ограждений, как стены, кровля, напольное покрытие и размеры оконных, дверных и балконных проемов. Немаловажными считаются этажность здания, а также наличие подвалов, чердаков и присущие им характеристики;
  • норма температурного режима для каждого помещения в доме. Подразумевается температура для комфортного пребывания людей в жилой комнате или зоне административной постройки (прочитайте: “Тепловой расчет помещения и здания целиком, формула тепловых потерь”);
  • особенности конструкции наружных ограждений, включая толщину и тип стройматериалов, наличие теплоизоляционного слоя и используемая для этого продукция;
  • назначение помещений. Эта характеристика особо важна для производственных зданий, в которых для каждого цеха или участка необходимо создать определенные условия относительно обеспечения температурного режима;
  • наличие специальных помещений и их особенности. Это касается, например, бассейнов, оранжерей, бань и т.д.;
  • степень техобслуживания. Наличие/отсутствие горячего водоснабжения, централизованного отопления, системы кондиционирования и прочего;
  • количество точек для забора подогретого теплоносителя. Чем их больше, тем значительнее тепловая нагрузка, оказываемая на всю отопительную конструкцию;
  • количество людей, находящихся в здании или проживающих в доме. От данного значения напрямую зависят влажность и температура, которые учитываются в формуле вычисления тепловой нагрузки;
  • прочие особенности объекта. Если это промышленное здание, то ими могут быть, количество рабочих дней на протяжении календарного года, число рабочих в смену. Для частного дома учитывают, сколько проживает в нем людей, какое количество комнат, санузлов и т.д.

Расчет нагрузок тепла

  • степень теплопотерь наружных ограждений;
  • мощность, необходимая для подогрева теплоносителя;
  • количество тепловой энергии, требуемое для нагрева воздуха для принудительной приточной вентиляции;
  • тепло, которое нужно для подогрева воды в бане или бассейне;
  • возможное дальнейшее расширение обогревательной системы. Это может быть создание отопления в мансарде, на чердаке, в подвале или в различных пристройках и строениях. Читайте также: “Как сделать отопление мансарды – популярные варианты обогрева”.

Особенности расчета тепловых нагрузок

Методы вычисления тепловых нагрузок

  • вычисление теплопотерь с использованием укрупненных показателей;
  • определение теплоотдачи установленного в здании отопительно-вентиляционного оборудования;
  • вычисление значений с учетом различных элементов ограждающих конструкций, а также добавочных потерь, связанных с нагревом воздуха.

Укрупненный расчет тепловой нагрузки

  • α – поправочный коэффициент, учитывающий климатические особенности конкретного региона, где строится здание (применяется в том случае, когда расчетная температура отличается от 30 градусов мороза);
  • q0 – удельная характеристика теплоснабжения, которую выбирают, исходя из температуры самой холодной недели на протяжении года (так называемой «пятидневки»). Читайте также: “Как рассчитывается удельная отопительная характеристика здания – теория и практика”;
  • V – наружный объем постройки.

Виды тепловых нагрузок для расчетов

  1. Сезонные нагрузки, имеющие следующие особенности:

– им присущи изменения в зависимости от температуры окружающего воздуха на улице;
– наличие отличий в величине расхода тепловой энергии в соответствии с климатическими особенностями региона местонахождения дома;
– изменение нагрузки на отопительную систему в зависимости от времени суток. Поскольку наружные ограждения имеют теплостойкость, данный параметр считается незначительным;
– расходы тепла вентиляционной системы в зависимости от времени суток.

  • Постоянные тепловые нагрузки. В большинстве объектов системы теплоснабжения и горячего водоснабжения они используются на протяжении года. Например, в теплое время года расходы тепловой энергии в сравнении с зимним периодом снижаются где-то на 30-35%.
  • Сухое тепло. Представляет собой тепловое излучение и конвекционный теплообмен за счет иных подобных устройств. Определяют данный параметр при помощи температуры сухого термометра. Он зависит от многих факторов, среди которых окна и двери, системы вентиляции, различное оборудование, воздухообмен, происходящий за счет наличия щелей в стенах и перекрытиях. Также учитывают количество людей, присутствующих в помещении.
  • Скрытое тепло. Образуется в результате процесса испарения и конденсации. Температура определяется при помощи влажного термометра. В любом по назначению помещении на уровень влажности влияют:

    – численность людей, одновременно находящихся в помещении;
    – наличие технологического или другого оборудования;
    – потоки воздушных масс, проникающих сквозь щели и трещины, имеющиеся в ограждающих конструкциях здания.

    Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему

    Проектирование и тепловой расчет системы отопления – обязательный этап при обустройстве обогрева дома. Основная задача вычислительных мероприятий – определение оптимальных параметров котла и системы радиаторов.

    Согласитесь, на первый взгляд может показаться, что проведение теплотехнического расчета под силу только инженеру. Однако не все так сложно. Зная алгоритм действий, получится самостоятельно выполнить необходимые вычисления.

    В статье подробно изложен порядок расчета и приведены все нужные формулы. Для лучшего понимания, мы подготовили пример теплового вычисления для частного дома.

    Тепловой расчёт отопления: общий порядок

    Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

    Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

    Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.

    Основные задачи расчёта и проектирования системы отопления:

    • наиболее достоверно определить тепловые потери;
    • определить количество и условия использования теплоносителя;
    • максимально точно подобрать элементы генерации, перемещения и отдачи тепла.

    При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций.

    На основании полученных данных подобирают компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.

    Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления.

    В результате теплового расчёта в наличии будет следующая информация:

    • число тепловых потерь, мощность котла;
    • количество и тип тепловых радиаторов для каждой комнаты отдельно;
    • гидравлические характеристики трубопровода;
    • объём, скорость теплоносителя, мощность теплового насоса.

    Тепловой расчёт – это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.

    Нормы температурных режимов помещений

    Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них.

    Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

    Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

    Согласно регламенту санитарных нормативов и правил есть различия в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, принцип ее расчета подробно изложен в этой статье.

    А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

    В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

    Для нежилых помещений офисного типа площадью до 100 м 2 :

    • 22-24°С – оптимальная температура воздуха;
    • 1°С – допустимое колебание.

    Для помещений офисного типа площадью более 100 м 2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

    Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

    И всё же для конкретных помещений квартиры и дома имеем:

    • 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
    • 19-21°С – кухня, туалет, допуск ±2°С;
    • 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
    • 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С

    Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

    Расчёт теплопотерь в доме

    Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является “стремление” создания температурного равновесия между двумя термодинамическими системами.

    Например, первая система – окружающая среда с температурой -20°С, вторая система – здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

    Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так “заметен” в сравнении с частным домом, поскольку квартира находиться внутри здания и “соседствует” с другими квартирами.

    В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени “уходит” тепло.

    Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

    Итак, объём утечек тепла от здания вычисляется по следующей формуле:

    Qi – объём теплопотерь от однородного вида оболочки здания.

    Каждая составляющая формулы рассчитывается по формуле:

    Q=S*∆T/R, где

    • Q – тепловые утечки, В;
    • S – площадь конкретного типа конструкции, кв. м;
    • ∆T – разница температур воздуха окружающей среды и внутри помещения, °C;
    • R – тепловое сопротивление определённого типа конструкции, м 2 *°C/Вт.

    Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц.

    Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

    R=d/k, где

    • R – тепловое сопротивление, (м 2 *К)/Вт;
    • k – коэффициент теплопроводности материала, Вт/(м 2 *К);
    • d – толщина этого материала, м.

    В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Проведение мероприятий по утеплению потолка или теплоизоляции мансардной крыши решают эту проблему.

    В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

    Определение мощности котла

    Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.

    Базисом системы отопления выступают разные виды котлов: жидко- или твердотопливные, электрические или газовые.

    Котел – это центральный узел системы отопления, который генерирует тепло. Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.

    Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла.

    Для обычной многокомнатной квартиры мощность котла вычисляется через площадь и удельную мощность:

    • Sпомещения– общая площадь отапливаемого помещения;
    • Руделльная– удельная мощность относительно климатических условий.

    Но эта формула не учитывает тепловые потери, которых достаточно в частном доме.

    Существует иное соотношение, которое учитывает этот параметр:

    Ркотла=(Qпотерь*S)/100, где

    • Ркотла– мощность котла;
    • Qпотерь– потери тепла;
    • S – отапливаемая площадь.

    Расчетную мощность котла необходимо увеличить. Запас необходим, если планируется использование котла для подогрева воды для ванной комнаты и кухни.

    Дабы предусмотреть запас мощности котла в последнюю формулу надо добавить коэффициент запаса К:

    Ркотла=(Qпотерь*S*К)/100, где

    К – будет равен 1.25, то есть расчётная мощность котла будет увеличена на 25%.

    Читайте также:  Как устранить течь в трубе отопления: инструкция по монтажу своими руками, чем заделать, цена, видео, фото

    Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.

    Особенности подбора радиаторов

    Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы “тёплый” пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.

    Тепловой радиатор – это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через “лепестки”.

    Существует несколько методик расчёта радиаторов отопления в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности вычислений.

    1. По площади. N=(S*100)/C, где N – количество секций, S – площадь помещения (м 2 ), C – теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт – количество теплового потока, которое необходимо для нагрева 1 м 2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
    2. По объёму. N=(S*H*41)/C, где N, S, C – аналогично. Н – высота помещения, 41 Вт – количество теплового потока, которое необходимо для нагрева 1 м 3 (эмпирическая величина).
    3. По коэффициентам. N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 – аналогично. к1 – учёт количества камер в стеклопакете окна комнаты, к2 – теплоизоляция стен, к3 – соотношение площади окон к площади помещения, к4 – средняя минусовая температура в наиболее холодную неделю зимы, к5 – количество наружных стен комнаты (которые “выходят” на улицу), к6 – тип помещения сверху, к7 – высота потолка.

    Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.

    Гидравлический расчёт водоснабжения

    Безусловно, “картина” расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.

    Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.

    Объём горячей воды в отопительной системе рассчитывается по формуле:

    W=k*P, где

    • W – объём носителя тепла;
    • P – мощность котла отопления;
    • k – коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон – 10-15 л).

    В итоге конечная формула выглядит так:

    W = 13.5*P

    Скорость теплоносителя – заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.

    Эта величина помогает оценить тип и диаметр трубопровода:

    V=(0.86*P*μ)/∆T, где

    • P – мощность котла;
    • μ – КПД котла;
    • ∆T – разница температур между подаваемой водой и водой обратном контуре.

    Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются “фундаментом” будущей системы отопления.

    Пример теплового расчёта

    В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, “зимний сад” и подсобные помещения.

    Обозначим исходные параметры дома, необходимые для проведения расчетов.

    • высота этажа – 3 м;
    • малое окно фасадной и тыльной части здания 1470*1420 мм;
    • большое окно фасада 2080*1420 мм;
    • входные двери 2000*900 мм;
    • двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

    Общая ширина постройки 9.5 м 2 , длинна 16 м 2 . Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня.

    Начинаем с расчёта площадей однородных материалов:

    • площадь пола – 152 м 2 ;
    • площадь крыши – 180 м 2 , учитывая высоту чердака 1.3 м и ширину прогона – 4 м;
    • площадь окон – 3*1.47*1.42+2.08*1.42=9.22 м 2 ;
    • площадь дверей – 2*0.9+2*2*1.4=7.4 м 2 .

    Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м 2 .

    Переходим к расчёту теплопотерь на каждом материале:

    А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт.

    В итоге подсчитаем мощность котла: Ркотла=Qпотерь*Sотаплив_комнат*К/100=19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт.

    Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

    Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт.

    Переходим к расчёту количества теплоносителя в системе – W=13.5*P=13.5*21=283.5 л. Значит, скорость теплоносителя будет составлять: V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 л.

    В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

    Подборка статей по тепловому расчету поможет определиться с точными параметрами элементов отопительной системы:

    Выводы и полезное видео по теме

    Простой расчёт отопительной системы для частного дома представлен в следующем обзоре:

    Все тонкости и общепринятые методики просчёта теплопотерь здания показаны ниже:

    Ещё один вариант расчёта утечек тепла в типичном частном доме:

    В этом видео рассказывается об особенностях циркуляции носителя энергии для обогрева жилища:

    Тепловой расчёт отопительной системы носит индивидуальный характер, его необходимо выполнять грамотно и аккуратно. Чем точнее будут сделаны вычисления, тем меньше переплачивать придется владельцам загородного дома в процессе эксплуатации.

    Имеете опыт выполнения теплового расчета отопительной системы? Или остались вопросы по теме? Пожалуйста, делитесь своим мнением и оставляйте комментарии. Блок обратной связи расположен ниже.

    Расчет тепловой нагрузки на отопление здания

    В холодное время года у нас в стране отопление зданий и сооружений составляют одну из основных статей расходов любого предприятия. И тут не важно жилое это помещение, производственное или складское. Везде нужно поддерживать постоянную плюсовую температуру, чтобы не замерзли люди, не вышло из строя оборудование или не испортилась продукция или материалы. В ряде случаев требуется провести расчет тепловой нагрузки на отопление того или иного зданий или всего предприятия в целом.

    В каких случаях производят расчет тепловой нагрузки

    • для оптимизации расходов на отопление;
    • для сокращения расчетной тепловой нагрузки;
    • в том случае если изменился состав теплопотребляющего оборудования (отопительные приборы, системы вентиляции и т.п.);
    • для подтверждения расчетного лимита по потребляемой теплоэнергии;
    • в случае проектирования собственной системы отопления или пункта теплоснабжения;
    • если есть субабоненты, потребляющие тепловую энергию, для правильного ее распределения;
    • В случае подключения к отопительной системе новых зданий, сооружений, производственных комплексов;
    • для пересмотра или заключения нового договора с организацией, поставляющей тепловую энергию;
    • если организация получила уведомление, в котором требуется уточнить тепловые нагрузки в нежилых помещениях;
    • если организация нее имеет возможности установить приборы учета теплоэнергии;
    • в случае увеличения потребления теплоэнергии по непонятным причинам.

    На каком основании может производиться перерасчет тепловой нагрузки на отопление здания

    Приказ Министерства Регионального Развития № 610 от 28.12.2009 “Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок” (Скачать) закрепляет право потребителей теплоэнергии производить расчет и перерасчет тепловых нагрузок. Так же такой пункт обычно присутствует в каждом договоре с теплоснабжающей организацией. Если такого пункта нет, обсудите с вашими юристами вопрос его внесения в договор.

    Но для пересмотра договорных величин потребляемой тепловой энергии должен быть предоставлен технический отчет с расчетом новых тепловых нагрузок на отопление здания, в котором должны быть приведены обоснования снижения потребления тепла. Кроме того, перерасчет тепловых нагрузок производиться после таких мероприятий как:

    • капитальный ремонт здания;
    • реконструкция внутренних инженерных сетей;
    • повышение тепловой защиты объекта;
    • другие энергосберегающие мероприятия.

    Методика расчета

    Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:

    1. Сбор исходных данные об объекте.
    2. Проведение энергетического обследования здания.
    3. На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
    4. Составление технического отчета.
    5. Согласование отчета в организации, предоставляющей теплоэнергию.
    6. Заключение нового договора или изменение условий старого.

    Сбор исходный данных об объекте тепловой нагрузки

    Какие данные необходимо собрать или получить:

    1. Договор (его копия) на теплоснабжение со всеми приложениями.
    2. Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
    3. План БТИ (копия).
    4. Данные по системе отопления: однотрубная или двухтрубная.
    5. Верхний или нижний розлив теплоносителя.

    Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:

    • площадь отапливаемых помещений;
    • тип системы отопления;
    • наличия горячего водоснабжения и вентиляции.

    Энергетическое обследование здания

    Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции. Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии. Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.

    В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.

    Технический отчет

    Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:

    1. Исходные данные об объекте.
    2. Схема расположения радиаторов отопления.
    3. Точки вывода ГВС.
    4. Сам расчет.
    5. Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
    6. Приложения.
      1. Свидетельство членства в СРО энергоаудитора.
      2. Поэтажный план здания.
      3. Экспликация.
      4. Все приложения к договору по энергоснабжению.

    После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.

    Пример расчета тепловых нагрузок объекта коммерческого назначения

    Это помещение на первом этаже 4-х этажного здания. Месторасположение – г. Москва.

    Исходные данные по объекту

    Адрес объектаг. Москва
    Этажность здания4 этажа
    Этаж на котором расположены обследуемые помещенияпервый
    Площадь обследуемых помещений112,9 кв.м.
    Высота этажа3,0 м
    Система отопленияОднотрубная
    Температурный график95-70 град. С
    Расчетный температурный график для этажа на котором находится помещение75-70 град. С
    Тип розливаВерхний
    Расчетная температура внутреннего воздуха+ 20 град С
    Отопительные радиаторы, тип, количествоРадиаторы чугунные М-140-АО – 6 шт.
    Радиатор биметаллический Global (Глобал) – 1 шт.
    Диаметр труб системы отопленияДу-25 мм
    Длина подающего трубопровода системы отопленияL = 28,0 м.
    ГВСотсутствует
    Вентиляцияотсутствует
    Тепловая нагрузка по договору (час/год)0,02/47,67 Гкал

    Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.

    Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.

    Итоговый максимальный расход – 0,008958 Гкал/час или 23 Гкал/год.

    В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.

    Формула расчета в Гкал

    Расчет тепловой нагрузки на отопление здания в случае отсутствия счетчиков учета тепловой энергии производится по формуле Q = V * (Т1 – Т2) / 1000, где:

    • V – объем волы, которую потребляет система отопления, измеряется тоннами или куб.м.,
    • Т1 – температура горячей воды. Измеряется в С (градусы по Цельсию) и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если точно определить температуру нельзя то используют усредненные показатели 60-65 С.
    • Т2 – температура холодной воды. Зачастую ее измерить практически невозможно и в таком случае используют постоянные показатели, которые зависят от региона. К примеру, в одном из регионов, в холодное время года показатель будет равен 5, в теплое – 15.
    • 1 000 – коэффициент для получения результата расчета в Гкал.

    Для системы отопления с закрытым контуром тепловая нагрузка (Гкал/час) рассчитывается другим способом: Qот = α * qо * V * (tв – tн.р) * (1 + Kн.р) * 0,000001, где:

    • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 С;
    • V – объем строения по наружным замерам;
    • – удельный отопительный показатель строения при заданной tн.р = -30 С, измеряется в Ккал/куб.м.*С;
    • – расчетная внутренняя температура в здании;
    • tн.р – расчетная уличная температура для составления проекта системы отопления;
    • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

    Расчет по радиаторам отопления на площадь

    Укрупненный расчет

    Если на 1 кв.м. площади требуется 100 Вт тепловой энергии, то помещение в 20 кв.м. должно получать 2 000 Вт. Типичный радиатор из восьми секций выделяет около 150 Вт тепла. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

    Точный расчет

    Точный расчет выполняется по следующей формуле: Qт = 100 Вт/кв.м. × S(помещения)кв.м. × q1 × q2 × q3 × q4 × q5 × q6× q7, где:

    • q1 – тип остекления: обычное =1,27; двойное = 1,0; тройное = 0,85;
    • q2 – стеновая изоляция: слабая, или отсутствующая = 1,27; стена выложенная в 2 кирпича = 1.0, современна, высокая = 0,85;
    • q3 – соотношение суммарной площади оконных проемов к площади пола: 40% = 1,2; 30% = 1,1; 20% – 0,9; 10% = 0,8;
    • q4 – минимальная уличная температура: -35 С = 1,5; -25 С = 1,3; -20 С = 1,1; -15 С = 0,9; -10 С = 0,7;
    • q5 – число наружных стен в помещении: все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2;
    • q6 – тип расчетного помещения над расчетной комнатой: холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8;
    • q7 – высота потолков: 4,5 м = 1,2; 4,0 м = 1,15; 3,5 м = 1,1; 3,0 м = 1,05; 2,5 м = 1,3.

  • Добавить комментарий