Расчетная температура наружного воздуха для проектирования отопления: инструкция по монтажу своими руками, низкотемпературные системы, регулировка

что считать расчетной температурой при проектировании ЖБ

16.12.2011, 13:20
15.12.2011, 18:54#1
#2

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

Морозостойкость, как я понимаю, физически зависит от:
1 района стр-ва (количество циклов замораживания оттаивания везде разное)
2 защиты бетона от замораживания воды (гидроизоляция, штукатурка, отопление)
3 влажность вокруг бетона (сухо, влажно %, в воде)
4 класс прочности (при повышении В, F также автоматически повышается)

Водопроницаемость:
1 наличие гидроизоляции (есть, нет и взамен)
2 агрессивность среды
3 технологические требования по водопроницаемости

Это только физика, нормативные требования мне лень смотреть. Ведь всё написано в нормах.

16.12.2011, 14:09#3

Я вот тоже недонашел.

Если ранее было так (Цитата из Пособия) “. 1.8 (1.8). Расчетная зимняя температура наружного воздуха принимается как средняя температура воздуха наиболее холодной пятидневки в зависимости от района строительства согласно СНиП 2.01.01.82. Расчетные технологические температуры устанавливаются заданием на проектиро¬вание. ” и “. * Температуру воздуха наиболее холодных суток и наиболее холодной пятидневки обеспеченностью 0,98 (графы 18 и 20) следует принимать при проектировании особо ответственных объектов по согласованию с Госстроем СССР. ” (Цитатта из СНиП 2.01.01-82), то теперь как?

SergeyKonstr
Посмотреть профиль
Найти ещё сообщения от SergeyKonstr

16.12.2011, 17:13#4

16.12.2011, 19:30#5

Doka, а причем тут холодный климат и вечномерзлые грунты. наверное потому и не могли найти, что только в нем и написано это.

в любом случае спасибо.

SergeyKonstr, про фундаменты объясню почему сомневаюсь. промерзают все грунты по разному. и температура в земле не такая как над землей. но в СП по бетону написано что “в остальных случаях”(кроме наземных конструкций) марки бетона по морозостойкости и водонепроницаемости устанавливаются по спец. указаниям. откуда берутся эти указания?

Tyhig, это все понятно, спасибо.. только вот температуру не знали какую брать для всех этих физик. выбор марки по водонепроницаемости зависит и от температуры тоже.

19.12.2011, 12:54#6

Существует еще и период строительства.
Конечно, если вы выставите требования, что строительство здания вести только за один “летний” период, а грунт не промерзает до фундамента, то, пожалуй, и не нужны требования по морозостойкости.

Ну, например, ГОСТ 19804-91.

Если посмотреть СП по основаниях, раздел 12, то придете опять же к бетонному СНиП.

SergeyKonstr
Посмотреть профиль
Найти ещё сообщения от SergeyKonstr

05.05.2016, 12:29#7

Подниму вопрос.
Перерыл всё СП 63.13330, нигде нет указаний какую температуру принимать за расчетную. Единственно в условиях применения СП сказано: Настоящий свод правил распространяется на проектирование бетонных и железобетонных конструкций зданий и сооружений различного назначения, эксплуатируемых в климатических условиях России (при систематическом воздействии температур не выше 50 °С и не ниже минус 70 °С), в среде с неагрессивной степенью воздействия.
В СП на коррозию сказано, что “расчетная зимняя температура наружного воздуха принимается согласно СП 131.13330 как температура наиболее холодной пятидневки”, а с какой обеспеченностью – не сказано.

Куда еще можно посмотреть?

Offtop: почему тема в прочем я не знаю, искал подобный вопрос в ЖБ разделе

05.05.2016, 13:05#8

05.05.2016, 13:33#9

Подниму вопрос.
Перерыл всё СП 63.13330, нигде нет указаний какую температуру принимать за расчетную. Единственно в условиях применения СП сказано: Настоящий свод правил распространяется на проектирование бетонных и железобетонных конструкций зданий и сооружений различного назначения, эксплуатируемых в климатических условиях России (при систематическом воздействии температур не выше 50 °С и не ниже минус 70 °С), в среде с неагрессивной степенью воздействия.
В СП на коррозию сказано, что “расчетная зимняя температура наружного воздуха принимается согласно СП 131.13330 как температура наиболее холодной пятидневки”, а с какой обеспеченностью – не сказано.

Куда еще можно посмотреть?

Offtop: почему тема в прочем я не знаю, искал подобный вопрос в ЖБ разделе

06.05.2016, 05:45#10

10.10.2016, 13:24#11

10.10.2016, 14:15#12

24.10.2016, 11:28#13

Ответ эксперта службы поддержки Техэксперта:

СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003 (с Изменениями N 1, 2)
4.5
Требования по нагрузкам и воздействиям, пределу огнестойкости, непроницаемости, морозостойкости, предельным показателям деформаций (прогибам, перемещениям, амплитуде колебаний), расчетным значениям температуры наружного воздуха и относительной влажности окружающей среды, по защите строительных конструкций от воздействия агрессивных сред и др. устанавливаются соответствующими нормативными документами (СП 20.13330, СП 14.13330, СП 28.13330, СП 22.13330, СП 131.13330, СП 2.13130).

СП 27.13330.2011 Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных и высоких температур. Актуализированная редакция СНиП 2.03.04-84

4.14
При расчете наибольших усилий от воздействия температуры в конструкциях, находящихся на наружном воздухе, температуру бетона и арматуры вычисляют по расчетной зимней температуре наружного воздуха, принимаемой по температуре наружного воздуха наиболее холодной пятидневки с обеспеченностью 0,92 по СНиП 23-01.
Пособие к СНиП 23-01-99 Строительная климатология. Справочное пособие к СНиП 23-01-99
2.3. Расчетные параметры воздуха наиболее холодной пятидневки с различной обеспеченностью
В строительной практике используются климатические параметры с различной степенью обеспеченности [ 4, 5, 7, 9- 11]. В настоящее время применяются характеристики климата, данные в федеральных и региональных нормах [ 3, 9, 12]. Так, для зимних условий нормируется наружная температура при разных уровнях обеспеченности. Уровни требований к обеспеченности расчетных условий в зданиях зависят от назначения помещения, требований к санитарно-гигиеническим или технологическим условиям, продолжительности пребывания людей в помещениях с различными эксплуатационными режимами. При определении расчетных температур для проектирования отопления в расчет принимается теплоемкость здания, а также возможность кратковременного небольшого понижения температуры внутреннего воздуха в периоды резких климатических похолоданий. Энергозатраты на эксплуатацию зданий зависят от обеспеченности требуемого микроклимата помещений
При выборе коэффициента обеспеченности наружных климатических условий следует учитывать проектируемую длительность эксплуатации объекта. Действительно, р = 0,98 соответствует вероятность превышения климатического параметра один раз в 50 лет. Поэтому при выборе коэффициента обеспеченности наружных климатических условий необходимо учитывать как возможность обеспечения комфортных условий в помещении, так и длительность эксплуатации объекта [ 4- 6, 9- 12].
Повышение надежности эксплуатации зданий и сооружений связано с удорожанием строительства. Следовательно, при выборе обеспеченности нормируемого климатического параметра необходимо учитывать технико-экономические характеристики проектируемого объекта. Требования к тепловому режиму помещений учитываются при выполнении теплотехнических расчетов ограждающих конструкций.
Значения температур наиболее холодных пятидневок относятся к параметрам, характеризующим климат местности, и находят широкое применение при планировке зданий различного назначения, при выборе марок стали, арматуры, бетона, алюминия и других строительных материалов, а также при проектировании фундаментов, мостов, труб и т.п.

При расчетах железобетонных конструкций необходимо значения температуры наружного воздуха наиболее холодной пятидневки с обеспеченностью 0,92, если иное не предусмотрено в Задании на проектирование.

Бежан-Бек Вадим Викторович
Эксперт ЛПП

Расчетная температура наружного воздуха для проектирования

От чего зависит температура батарей отопления в муниципальный квартире? Регламентируют ли ее ГОСТ либо СНиП? Как температурный график отопительной системы связан с климатической территорией? Давайте попытаемся ответить на эти вопросы.

Расчетная температура окружающей среды

Понятие температура отопительного периода имеет отношение не только к температурному графику. Им определяются требования к степени теплоизоляции здания, тепловому потоку и размерам от размещенных в жилых и других помещениях отопительных устройств, качеству и остеклению герметизации подъездов.

Так что же это за понятие? Это всего лишь усредненная температура самых прохладных пятидневок за последние 50 лет, при которой работа системы отопления обязана обеспечить комфортные условия в зданий.

Эти условия обрисованы в распоряжении Правительства РФ от 23.05.2006 “Правила предоставления услуг ЖКХ гражданам”:

  • В жилых помещениях, расположенных в середине дома, температура не должна быть ниже +18 С; в угловых – +20 С.

Нюанс: при расчетной температуре ниже -31 С эти значения увеличиваются до +20 и +22 градусов соответственно.

  • В санузле должно быть не меньше +16 градусов, в ванной – +25.

Для публичных заведений советы возможно отыскать в СНиП 41-01-2003 и ведомственных нормах. Так, в классных помещениях должно быть не меньше +21 С, а в гастрономах – +12 С; в поликлинике рекомендованная температура по окончании отопластики равна +22, а при отклонениях в работе щитовидной железы – +15.

Возвратимся, но, мало назад. Откуда проектировщику забрать расчетные температуры воздуха для того либо иного города?

Вся нужная информацию содержится в СНиП 23-01-99 “Строительная климатология”. Любопытно, что в изданном через 8 лет по окончании распада Альянса документе упоминаются все главные поселения бывших союзных республик.

ГородРасчетная температура
Барнаул-39
Благовещенск-34
Тында-42
Белгород-23
Воронеж-26
Братск-43
Калининград-19
Кемерово-39
Сочи-3
Игарка-49
Сусуман-55
Верхоянск-59
Баку-4
Ялта-7

Температурный график

Какой должна быть температура радиаторов отопления в квартире, разрешающая обеспечить обрисованные условия?

Ее определяет средняя за сутки температура окружающей среды на улице.

Зависимость описывается двумя температурными графиками:

  • Для теплотрассы на выходе из ТЭЦ либо котельной температура подающего и обратного трубопроводов находится в пределах 150/70 С.
  • Во внутридомовой системе температурный режим отопления обязан укладываться в значения 95/70 градусов в двухтрубной системе (другими словами практически во всех многоквартирных зданиях) и 105/70 в однотрубных системах отопления зданий.

Обратите внимание:в детсадах большая температура воды в системе отопления не имеет возможности быть больше +37 С. Как раз для компенсации этого низкого значения радиаторы в группах в большинстве случаев имеют очень внушительные размеры.

Из-за чего температура отопления в квартире столь резко отличается от параметров автострады? Дабы ответить на данный вопрос, нужно кратко разъяснить принцип работы элеваторного узла (теплового пункта дома).

Требования к системе отопления в некотором роде взаимоисключающи. С одной стороны, чем меньше разброс температур между подачей и обраткой – тем равномернее будут нагреты батареи в доме и тем выше окажется эффективность концевых отопительных устройств. Раз так – разумеется, что скорость циркуляции в системе должна быть высокой.

Но перегрев обратки очень нежелателен для ТЭЦ: из-за определенных технических ограничений воду перед ее запуском на новый цикл сначала приходится предварительно охлаждать до тех самых 70 С.

Устройство элеватора достаточно остроумно обходит несоответствие: часть воды из обратного трубопровода вовлекается в повторный цикл циркуляции. В следствии при подаче на входных задвижках в 140 С в дом (конкретно в радиаторы) идет всего 90-95 градусов.

О современной системе отопления в многоквартирном доме полезно знать еще пара вещей.

  • При температуре подачи на автостраде до 90 градусов, система ГВС должна быть запитана с подающего трубопровода; при превышении этого значения – с обратного. В случае если переключения не случилось, в системе ГВС может оказаться столько же, сколько на прямой нитке теплотрассы. Какие конкретно последствия это будет иметь для резиновых прокладок и гибких подводок – додуматься нетрудно.
  • В критических обстановках нормативы температур в самой системе отопления также смогут быть превышены. Скажем, при массовых жалобах на мороз в квартирах практикуется работа элеватора без сопла, с заглушенным подсосом.

Регулировка

Как выполняется регулировка температуры отопления в системах ЦО по окончании входных задвижек?

Элеватор

Штатно температура отопления в системе может изменяться лишь одним методом – трансформацией диаметра сопла. Все трансформации должны быть согласованы с представителями организации – поставщика тепла (коммунальных тепловых сетей); решения о том, заварить сопло либо рассверлить его, принимаются на основании давления и замеров температуры в элеваторном узле и в тепловых колодцах.

изменение и Демонтаж сопла его размеров занимают не более получаса и требуют полной работоспособности запорной арматуры в узле. Фактически, достаточно перекрыть по кругу все задвижки (входные, ГВС, домовые) и разобрать все три фланца на элеваторе. Рассверленное либо заваренное сопло монтируется в обратном порядке.

Совет: новые паронитовые прокладки для трубных фланцев оказываются на складах жилищных организаций, увы, нечасто. При демонтаже элеватора либо замене задвижек своими руками окажет помощь несложная инструкция: прокладка вырезается из автомобильной камеры.

Стоит упомянуть еще несколько способов, которыми может регулироваться температура отопления – воды в трубах и радиаторов.

  • Вместо простого сопла с постоянным диаметром может употребляться регулируемый элеватор. Несложная подстройка пропускной свойстве разрешает гибко настраивать температуру смеси и обратки.

  • Помимо этого, для уменьшения температуры обратного трубопровода возможно уменьшить перепад давления на элеваторе. Это делается входной обратной задвижкой.

  • ГВС переключается на прямую нитку.
  • Замеряется давление на подающей нитке до элеватора. После этого манометр вкручивается в обратный трубопровод в любой его точке.
  • Входная обратная задвижка всецело закрывается и медлительно приоткрывается, пока отличие давлений между подающим и обратным трубопроводами не уменьшится на 0,2 кгс/см2 от исходной. При необходимости повторные дальнейшее уменьшение и замеры температур перепада по манометру повторяется через дни с тем же шагом.

Обратите внимание: в случае если легко частично закрыть всецело открытую задвижку, ее щечки смогут заклиниться штоком и опустится в рабочее положение позднее. В следствии обратка окажется всецело закрытой. Цена остановки циркуляции в отопительный сезон – гарантированная разморозка подъездного отопления.

Квартира

Как регулируется температура воды в трубах отопления в отдельной квартиры?По понятным обстоятельствам ее возможно лишь уменьшить дросселирующей запорной арматурой. Для данной цели на выходе каждого отопительного прибора ставится дроссель либо термостатическая головка, регулирующая собственную проходимость в зависимости от температуры в помещении.

В крайнем случае,температура теплоносителя в системе отопления может регулироваться и шаровым вентилем; но его чувствительность к положению рычага делает настройку достаточно неудобной.

Что делать, в случае если теплоотдача отопительного прибора недостаточна?

Вот меры, талантливые расширить ее.

  • Простое добавление новых секций с дальнего от подводок конца поднимет тепловой поток от радиатора нелинейно, но достаточно заметно. Из-за чего нелинейно? Да вследствие того что конец батареи постоянно будет холоднее ее подводок.
  • Перемычка между подводками, снабженная вентилем, способна при его закрытии расширить поток теплоносителя через секции. Значит, прибор начнёт отдавать больше тепла. А вот всецело глушить перемычку не следует: без нее регулировка температуры батарей отопления дросселями приведет к достаточно неприятному общению с замерзающими соседями.
  • Подводки возможно подключить к радиатору не только сборку, но и снизу. Тогда теплоноситель будет равномерно циркулировать через все секции, что также поднимет температуру в квартире.

  • Наконец, не следует забывать про промывку. Сброс воды через шланг и промывочный кран в канализацию удалят из батареи накопившиеся песок и ил, восстанавливая циркуляцию по всему объему.

Кстати: радиаторы с нижним подключением не нуждаются в промывке. Как раз вследствие того что теплоноситель равномерно движется на всей протяженности нижнего коллектора.

Теплый пол

Как подключить к системе ЦО низкотемпературное отопление? Так как для теплого пола температуры выше +45С категорически неприемлемы.

Метод, которым низкотемпературные системы отопления согласуются с ЦО, быстро напоминает принцип работы элеваторного узла. Часть теплоносителя вовлекается в повторную циркуляцию, которая обеспечивается маломощным насосом. Регулировка температуры осуществляется двухпроходным клапаном с термоголовкой.

Заключение

Сохраняем надежду, что нам удалось удовлетворить любопытство читателя, познакомив его с некоторыми качествами работы отопительных систем. Как неизменно, прикрепленное видео предложит дополнительную данные. Удач!

Расчетная температура наружного воздуха для проектирования отопления и температура теплоносителя

От чего зависит температура батарей отопления в городской квартире? Регламентируют ли ее ГОСТ или СНиП? Как температурный график отопительной системы связан с климатической зоной? Давайте попробуем ответить на эти вопросы.

Подчиняется ли каким-то закономерностям температура батарей? Давайте выясним.

Расчетная температура воздуха

Понятие температура отопительного периода имеет отношение не только к температурному графику. Им определяются требования к степени теплоизоляции здания, размерам и тепловому потоку от размещенных в жилых и прочих помещениях отопительных приборов, остеклению и качеству герметизации подъездов.

Так что же это за понятие? Это всего лишь усредненная температура наиболее холодных пятидневок за последние 50 лет, при которой работа системы отопления должна обеспечить комфортные условия внутри зданий.

Эти условия описаны в постановлении Правительства РФ от 23.05.2006 “Правила предоставления коммунальных услуг гражданам”:

  • В жилых комнатах, расположенных в середине дома, температура не должна быть ниже +18 С; в угловых – +20 С.

Нюанс: при расчетной температуре ниже -31 С эти значения повышаются до +20 и +22 градусов соответственно.

  • В санузле должно быть не менее +16 градусов, в ванной – +25.

Для общественных заведений рекомендации можно найти в СНиП 41-01-2003 и ведомственных нормах. Так, в классных помещениях должно быть не менее +21 С, а в продовольственных магазинах – +12 С; в больнице рекомендованная температура после отопластики равна +22, а при отклонениях в работе щитовидной железы – +15.

Дополнительные значения для некоторых типов помещений.

Вернемся, однако, немного назад. Откуда проектировщику взять расчетные температуры воздуха для того или иного города?

Вся необходимая информация содержится в СНиП 23-01-99 “Строительная климатология”. Любопытно, что в изданном через 8 лет после распада Союза документе упоминаются все основные населенные пункты бывших союзных республик.

ГородРасчетная температура
Барнаул-39
Благовещенск-34
Тында-42
Белгород-23
Воронеж-26
Братск-43
Калининград-19
Кемерово-39
Сочи-3
Игарка-49
Сусуман-55
Верхоянск-59
Баку-4
Ялта-7

Температурный график

Какой должна быть температура радиаторов отопления в квартире, позволяющая обеспечить описанные условия?

Ее определяет среднесуточная температура воздуха на улице.

Зависимость описывается двумя температурными графиками:

  • Для теплотрассы на выходе из ТЭЦ или котельной температура подающего и обратного трубопроводов находится в пределах 150/70 С.
  • Во внутридомовой системе температурный режим отопления должен укладываться в значения 95/70 градусов в двухтрубной системе (то есть почти во всех многоквартирных домах) и 105/70 в однотрубных системах отопления зданий.

Слева – вход с трассы. Справа – система отопления дома.

Обратите внимание:в дошкольных учреждениях максимальная температура воды в системе отопления не может превышать +37 С.
Именно для компенсации этого невысокого значения радиаторы в группах обычно имеют весьма внушительные размеры.

Почему температура отопления в квартире столь сильно отличается от параметров трассы? Чтобы ответить на этот вопрос, надо вкратце разъяснить принцип работы элеваторного узла (теплового пункта дома).

Требования к системе отопления в некотором роде взаимоисключающи. С одной стороны, чем меньше разброс температур между подачей и обраткой – тем равномернее будут нагреты батареи в доме и тем выше окажется эффективность концевых отопительных приборов. Раз так – очевидно, что скорость циркуляции в системе должна быть достаточно высокой.

Однако перегрев обратки крайне нежелателен для ТЭЦ: из-за определенных технических ограничений воду перед ее запуском на новый цикл вначале приходится предварительно охлаждать до тех самых 70 С.

Устройство элеватора довольно остроумно обходит противоречие: часть воды из обратного трубопровода вовлекается в повторный цикл циркуляции. В результате при подаче на входных задвижках в 140 С в дом (непосредственно в радиаторы) идет всего 90-95 градусов.

Схема работы элеватора.

О современной системе отопления в многоквартирном доме полезно знать еще несколько вещей.

  • При температуре подачи на трассе до 90 градусов, система ГВС должна быть запитана с подающего трубопровода; при превышении этого значения – с обратного. Если переключения не произошло, в системе ГВС может оказаться столько же, сколько на прямой нитке теплотрассы. Какие последствия это будет иметь для гибких подводок и резиновых прокладок – догадаться нетрудно.
  • В критических ситуациях нормативы температур в самой системе отопления тоже могут быть превышены. Скажем, при массовых жалобах на холод в квартирах практикуется работа элеватора без сопла, с заглушенным подсосом.

Регулировка

Как выполняется регулировка температуры отопления в системах ЦО после входных задвижек?

Элеватор

Штатно температура отопления в системе может меняться только одним способом – изменением диаметра сопла. Все изменения должны быть согласованы с представителями организации – поставщика тепла (коммунальных тепловых сетей); решения о том, заварить сопло или рассверлить его, принимаются на основании замеров температуры и давления в элеваторном узле и в тепловых колодцах.

Демонтаж сопла и изменение его размеров занимают не более получаса и требуют полной работоспособности запорной арматуры в узле. Собственно, достаточно перекрыть по кругу все задвижки (входные, ГВС, домовые) и разобрать все три фланца на элеваторе. Рассверленное или заваренное сопло монтируется в обратном порядке.

Совет: новые паронитовые прокладки для трубных фланцев оказываются на складах жилищных организаций, увы, нечасто.
При демонтаже элеватора или замене задвижек своими руками поможет простая инструкция: прокладка вырезается из автомобильной камеры.

Стоит упомянуть еще пару способов, которыми может регулироваться температура отопления – воды в трубах и, соответственно, радиаторов.

  • Вместо обычного сопла с постоянным диаметром может использоваться регулируемый элеватор. Простая подстройка пропускной способности позволяет гибко настраивать температуру смеси и обратки.

  • Кроме того, для уменьшения температуры обратного трубопровода можно уменьшить перепад давления на элеваторе. Это делается входной обратной задвижкой.
  • ГВС переключается на прямую нитку.
  • Замеряется давление на подающей нитке до элеватора. Затем манометр вкручивается в обратный трубопровод в любой его точке.
  • Входная обратная задвижка полностью закрывается и медленно приоткрывается, пока разница давлений между подающим и обратным трубопроводами не уменьшится на 0,2 кгс/см2 от исходной. При необходимости повторные замеры температур и дальнейшее уменьшение перепада по манометру повторяется через сутки с тем же шагом.

Регулируется запорная арматура 4 с контролем перепада по манометру 2.

Обратите внимание: если просто частично закрыть полностью открытую задвижку, ее щечки могут заклиниться штоком и опустится в рабочее положение позже.
В результате обратка окажется полностью закрытой.
Цена остановки циркуляции в отопительный сезон – гарантированная разморозка подъездного отопления.

Квартира

Как регулируется температура воды в трубах отопления внутри отдельной квартиры?По понятным причинам ее можно только уменьшить дросселирующей запорной арматурой. Для этой цели на выходе каждого отопительного прибора ставится дроссель или термостатическая головка, регулирующая собственную проходимость в зависимости от температуры в комнате.

В крайнем случае,температура теплоносителя в системе отопления может регулироваться и шаровым вентилем; однако его чувствительность к положению рычага делает настройку довольно неудобной.

Термостатическая головка автоматически поддерживает постоянную температуру в комнате.

Что делать, если теплоотдача отопительного прибора недостаточна?

Вот меры, способные увеличить ее.

  • Простое добавление новых секций с дальнего от подводок конца поднимет тепловой поток от радиатора нелинейно, но довольно заметно. Почему нелинейно? Да потому, что конец батареи всегда будет холоднее ее подводок.
  • Перемычка между подводками, снабженная вентилем, способна при его закрытии увеличить поток теплоносителя через секции. Стало быть, прибор станет отдавать больше тепла. А вот полностью глушить перемычку не стоит: без нее регулировка температуры батарей отопления дросселями приведет к довольно неприятному общению с замерзающими соседями.
  • Подводки можно подключить к радиатору не только сборку, но и снизу. Тогда теплоноситель будет равномерно циркулировать через все секции, что тоже поднимет температуру в квартире.

На фото – нижнее подключение радиатора.

  • Наконец, не стоит забывать про промывку. Сброс воды через промывочный кран и шланг в канализацию удалят из батареи накопившиеся ил и песок, восстанавливая циркуляцию по всему объему.

Кстати: радиаторы с нижним подключением не нуждаются в промывке. Именно потому, что теплоноситель равномерно движется по всей длине нижнего коллектора.

Теплый пол

Как подключить к системе ЦО низкотемпературное отопление? Ведь для теплого пола температуры выше +45С категорически неприемлемы.

Способ, которым низкотемпературные системы отопления согласуются с ЦО, живо напоминает принцип работы элеваторного узла. Часть теплоносителя вовлекается в повторную циркуляцию, которая обеспечивается маломощным насосом. Регулировка температуры осуществляется двухпроходным клапаном с термоголовкой.

Схема простейшего узла смешения.

Заключение

Надеемся, что нам удалось удовлетворить любопытство читателя, познакомив его с некоторыми аспектами работы отопительных систем. Как всегда, прикрепленное видео предложит дополнительную информацию. Успехов!

Температура теплоносителя в системе отопления: расчет и регулирование

Какой должна быть температура теплоносителя в системе отопления, чтобы в доме жилось комфортно? Этот момент интересует многих потребителей.

При выборе температурного режима, учитывается несколько факторов:

  • необходимость достижения нужной степени обогрева помещений;
  • обеспечение надежной, стабильной, экономичной и продолжительной работы отопительного оборудования;
  • эффективная передача тепловой энергии по трубопроводам.

Температура теплоносителя в отопительной сети

Но следует учитывать, что в зависимости от температуры воздуха снаружи здания строение через ограждающие конструкции может терять разную величину тепла. Поэтому температура теплоносителя в системе отопления, исходя из внешних факторов, варьируется пределе от 30 до 90 градусов. При нагреве воды свыше в отопительной конструкции начинается разложение лакокрасочных покрытий, что запрещено санитарными нормами.

Оптимальная температура для котельной

Для обеспечения эффективной теплоотдачи в котлах отопления должна быть более высокая температура, поскольку, чем больше тепла может перенести определенный объем воды, тем лучше степень обогрева. Поэтому на выходе из теплогенератора стараются приблизить температуру жидкости к максимально допустимым показателям.

Помимо этого, минимальный нагрев воды или другого теплоносителя в котле нельзя опускать ниже точки росы (обычно данный параметр равен 60-70 градусов, но он во многом зависит от технических особенностей модели агрегата и вида топлива). В противном случае при горении теплогенератора появляется конденсат, который в соединении с агрессивными веществами, имеющимися в составе дымовых газов, приводит к повышенному износу прибора.

Согласование температуры воды в котле и системе

Существует два варианта, как можно согласовать высокотемпературные теплоносители в котле и более низкотемпературные в отопительной системе:

  1. В первом случае следует пренебречь эффективностью функционирования котла и на выходе из него выдавать теплоноситель такой степени нагрева, которая требуется системе в настоящее время. Так поступают в работе небольших котельных. Но в итоге получается не всегда подавать теплоноситель в соответствии с оптимальным температурным режимом согласно графику (прочитайте: “График отопительного сезона – начало и конец сезона”). В последнее время все чаще в небольших котельных на выходе монтируют регулятор нагрева воды с учетом показаний, который фиксирует датчик температуры теплоносителя.
  2. Во втором случае, нагрев воды для транспортировки по сетям на выходе из котельной делают максимальным. Далее в непосредственной близости от потребителей производится автоматическое регулирование температуры теплоносителя до необходимых значений. Такой способ считается более прогрессивным, его применяют на многих крупных теплосетях, а поскольку регуляторы и датчики стали дешевле, его все чаще используют на небольших объектах теплоснабжения.

Принцип работы регуляторов отопления

Регулятор температуры теплоносителя, циркулирующего в отопительной системе – это прибор, с помощью которого обеспечивается автоматический контроль и корректировка температурных параметров воды.

Состоит данное устройство, изображенное на фото, из следующих элементов:

  • вычислительный и коммутирующий узел;
  • рабочий механизм на трубе подачи горячего теплоносителя;
  • исполнительный блок, предназначенный для подмеса теплоносителя, поступающего из обратки. В ряде случаев устанавливают трехходовой кран;
  • повысительный насос на участке подачи;
  • не всегда повысительный насос на отрезке «холодного перепуска»;
  • датчик на линии подачи теплоносителя;
  • клапаны и запорная арматура;
  • датчик на обратке;
  • датчик температуры наружного воздуха;
  • несколько датчиков температуры помещения.

Теперь необходимо разобраться, как происходит регулирование температуры теплоносителя и как функционирует регулятор.

На выходе из отопительной системы (обратке) температура теплоносителя зависит от объема воды, прошедшей через нее, поскольку нагрузка является относительно постоянной величиной. Прикрывая подачу жидкости, регулятор тем самым увеличивает разность между линией подачи и обраткой до требуемого значения (на данных трубопроводах устанавливают датчики).

Когда наоборот необходимо увеличить поток теплоносителя, тогда в систему теплоснабжения врезают повысительный насос, которым тоже управляет регулятор. С целью понижения температуры водяного входящего потока применяют холодный перепуск», который означает, что часть носителя тепла, уже проциркулировавшего по системе, вновь направляют на вход.

В результате регулятор, перераспределяя потоки теплоносителя в зависимости от данных, зафиксированных датчиком, обеспечивает соблюдение температурного графика отопительной системы.

Нередко такой регулятор комбинируют с регулятором горячего водоснабжения с помощью одного вычислительного узла. Прибор, регулирующий ГВС, проще в управлении и в части исполнительных механизмов. При помощи датчика на линии горячего водоснабжения выполняется регулировка прохода воды через бойлер и в итоге она стабильно имеет стандартные 50 градусов (прочитайте: “Отопление через водонагреватель”).

Преимущества применения регулятора в теплоснабжении

Использование регулятора в отопительной системе имеет следующие положительные моменты:

  • он позволяет четко выдерживать температурный график, в основе которого лежит расчет температуры теплоносителя (прочитайте: “Правильный расчет теплоносителя в системе отопления”);
  • не допускается повышенный нагрев воды в системе и тем самым обеспечивается экономное расходование топлива и тепловой энергии;
  • производство тепла и его транспортировка происходят в котельных при самых эффективных параметрах, а необходимые для обогрева характеристики теплоносителя и ГВС создает регулятор в ближайшем к потребителю тепловом узле или пункте (прочитайте: “Теплоноситель для системы отопления – параметры давления и скорости”);
  • для всех абонентов теплосети обеспечиваются одинаковые условия вне зависимости от расстояния до источника теплообеспечения.

Посмотрите также видео о циркуляции теплоносителя в системе отопления:


Установка автоматической системы регулировки отопления, теплоснабжения в Перми и Крае

Услуги автоматизации систем центрального отопления, теплоснабжения с целью экономии тепла в Перми и Пермском крае. Автоматика центрального отопления, теплоснабжения устанавливается в многоквартирные и многоэтажные дома, жилые здания, заводы, детские сады, школы, МКД, ТСЖ. Автоматическая регулировка потребления тепловой энергии повышает энергоэффективность зданий, подключённых к центральным тепловым сетям.

  • Проектирование
  • Автоматика ГВС
  • Поставка
  • Балансировка отопления
  • Настройка
  • Обслуживание

Погодозависимая автоматика отопления, теплоснабжения. Погодное регулирование это разновидность автоматических систем управления потребления тепловой энергии на отоплении. Основной принцип автоматической регулировки, заложенный в системе – поддержание температуры теплоносителя от фактической температуры наружного воздуха, согласно температурного графика.

Платите меньше за тепло уже

в этом отопительном сезоне,

сам решаю, сколько потребляю!

Стоимость установки системы автоматического регулирования потребления тепловой энергии.

Цена установки автоматики

Независимая система отопления

Цена установки автоматики

Зависимая система отопления

Узнайте стоимость установки!

7 лет юридическому лицу, а значит – работу выполним в срок, а гарантия будет исполнена.

Регулировка центрального отопления, теплоснабжения ТСЖ, МКД вручную

Автоматическая регулировка тепла, отопления, теплоснабжения.

Для создания комфортного отопления в квартире обязательным элементом подразумевает использование автоматики. Не будете же вы постоянно сидеть в тепловом пункте и контролировать в ручном режиме работу теплового узла. Да и комфортные условия в доме лучше обеспечить не открытыми форточками, хотя проветривание в комнатах никто и не отменял, а установлением желаемой температуры. Создать мягкий климат в доме не просто, при резких колебаниях температуры помещений и частых сквозняках. Вот эти задачи и выполняет автоматика систем отопления.

Автоматизация системы отопления никогда ещё не была настолько доступной, убедитесь в этом сами!

Техническая возможность установки автоматики определяется инженером-теплотехником на месте. Выезд специалиста бесплатный и ни к чему не обязывает.

Узнайте возможность установки!

Закажите бесплатный выезд инженера!

Экономия тепла, отопления, теплоснабжения.

За счёт чего достигается экономия?

  • Потребитель сам решает, когда и сколько тепла потреблять.
  • Равномерное распределение тепла по дому.
  • Предотвращение перетопов и перегрева в жилых домах, предприятиях.
  • Отсутствие закипания теплообменников пластинчатых или кожухотрубных.
  • Ограничение поступления лишнего теплоносителя в дом.
  • Увеличение срока службы трубопроводов, системы отопления.
  • Контроль ИТП online, с оповещением об аварийных ситуациях.
  • Вы не платите за чужое, не использованное отопление в оттепели.

Комфорт проживания.

  • Нет нужды использовать электрообогреватели.
  • Сквозняки из-за широко открытых окон и дверей балконов в прошлом.
  • Духота в квартире не досаждает.
  • Холодные батареи уже не у вас.

Система автоматического управления отоплением, теплоснабжением здания.

Объект работает без постоянного обслуживающего персонала, а информация выводится на диспетчерский пульт управления либо на сотовый телефон.

Функция удалённого управления позволяет на расстоянии менять настройки системы корректировать её работу в ручном режиме. Видеть параметры системы в режиме онлайн.

Центральные тепловые пункты круглогодично обеспечивают жителей теплом в отопительный сезон. Основная Задача АСУ ИТП – это круглосуточный контроль и управление подачей теплоносителя с постоянным давлением, поддержание заданной температуры в помещении. Для эффективности обслуживания информация от исполнительных механизмов и датчиков собирается и передается на единый диспетчерский пульт по средствам проводной (кабельный интернет) и беспроводной (сотовой) связи. Это позволяет отслеживать работу оборудования АСУ теплового пункта в режиме реального времени и при необходимости выполнять корректировку рабочих параметров оборудования.

Регуляторы тепла, отопления, теплоснабжения.

Регуляторы предназначены для автоматического изменения расхода теплоносителя в системе отопления на центральных и индивидуальных тепловых пунктах, а также для автоматического регулирования температуры в системах приточной вентиляции путем воздействия на клапан с электрическим приводом. Приборами предусмотрено регулирование разности температур воды в подающем и обратном трубопроводах систем отопления либо температуры воды в подающем трубопроводе по графику отопительных систем в зависимости от температуры наружного воздуха. Причем регулятор при определенном значении температуры наружного воздуха и дальнейшем ее понижении поддерживает постоянное значение регулируемого параметра теплоносителя, исключая разрегулировку тепловых сетей, работающих по графику с верхней срезкой. Регулятором предусмотрена коррекция графика отпуска тепла при отклонениях температуры внутреннего воздуха от заданного значения.

Насосы циркуляционные, корректирующие.

Насосы в системе автоматики выполняют очень важную функцию:

  • Поддерживают расчётную циркуляцию теплоносителя в системе отопления на время закрытия регулирующего клапана.
  • Увеличивают скорость циркуляции теплоносителя в системе отопления, в случаях, когда теплоснабжающая организация не обеспечивает расчётные параметры теплоснабжения.

Автономность работы системы автоматики отопления, теплоснабжения.

В наших системах применяется специальная безаварийная схема, которая позволяет при аварийных ситуациях на теплосетях автоматически переводить систему в прежний режим работы (по-старому). Отключение электричества, связи не скажется на нормальном теплоснабжении системы отопления здания.

Как снизить, уменьшить, убавить плату за отопление?

Утепление фасадов, крыш, дверей, окон позволит поднять температуру помещения, но не экономить, т.к. жители просто-напросто начнут выпускать излишки тепла через окна, хотя эти мероприятия являются необходимыми для решения комплексной задачи энергосбережения и повышения энергоэффективности.

Избежать перегрева помещений, после проведённых мероприятий по повышению теплового сопротивления ограждающих конструкций, поможет автоматическая регулировка системы отопления. Система создаст условия, при которых тепло будет поступать в пределах разумной достаточности, создавая для всех жителей комфорт проживания.

Регулировка батарей и радиаторов отопления.

Отдельная поквартирная регулировка отопления не состоялась т.к. жители, которые находятся днём дома поджимают отопление в своей квартире, обогреваясь в это время теплом излучаемым стенами, полом, потолком соседних квартир. По итогу месяца, цифры в счетах за отопление сильно разнятся между квартирами. Многие жильцы находят в этом не справедливость.

Ручная регулировка тепла, системы отопления.

Принцип: Чем холоднее на улице, тем интенсивнее должна работать отопительная система и, наоборот, при повышении температуры воздуха в доме выше предельного значения, температура теплоносителя в приборах отопления должна снижаться.

Самый простой способ регулирования системы отопления состоит в ручном управлении работой узла управления – ограничение поступления теплоносителя, перекрытием запорной арматуры (задвижки, шаровые краны, поворотные затворы). Уровень, на который прижат кран можно определить по показаниям теплосчётчика. На тепловычислителе необходимо выбрать режим индикации параметров – мгновенный расход теплоносителя.

Почему ручная регулировка не прижилась?

После прижатия задвижки, расход теплоносителя из тепловой сети падает, а система отопления дома тормозится. Циркуляция воды по стоякам системы отопления замедляется, разность температуры между подачей и обраткой растёт. Вследствие этих процессов, к последним батареям на стояке доходит остывший теплоноситель.

В домах с верхней разливом системы отопления – на верхних этажах будет избыток тепла, в то время как, нижние будут мёрзнуть.

В домах с нижней разливом системы отопления наоборот – верхние этажи замерзают, нижние вынуждены избыток тепла выпускать на улицу.

Недостатки Ручной регулировки отопления:

  • Происходит торможение циркуляции теплоносителя.
  • Появляется разбалансировка системы отопления.
  • В одном крыле холодно, в другом жарко.
  • При резком похолодании слесарь может не успеть открыть задвижку.
  • В случае чрезмерного закрытия задвижки, теплосчётчик может выдать ошибку.
  • Изнашивается запорная арматура, она не предназначена для регулировки.
  • Слесарь привязан к тепловому узлу.
  • Необходимость лично реагировать на изменения погоды.

Узнайте подробней о ручной регулировке!

Полчите бесплатную консультацию теплотехника!

Как происходит регулировка системы отопления?

  • Погодозависимая автоматическая регулировка по температурному графику зависимости температуры теплоносителя от температуры наружного воздуха;
  • Регулировка теплопотребления для поддержания заданных параметров температуры воздуха в помещениях с центральным отоплением.
  • Программное снижение расхода теплоносителя на отопление в ночное время, выходные и праздничные дни.
  • Ограничение температуры обратной сетевой воды по графику ее зависимости от температуры наружного воздуха в соответствии с требованиями теплоснабжающей организации в системах отопления

Теплоноситель от системы центрального теплоснабжения поступает к вам в ИПТ, на узел управления. Далее теплоноситель поступает в систему отопления дома. Пройдя по всем батареям, теплоноситель со всех стояков собирается в трубу обратки и попадает вновь в ваш узел управления. Контролер автоматики анализирует параметры температуры на улице, подающем трубопроводе (подаче), обратном трубопроводе (обратке) и в автоматическом режиме производит регулировку потребления теплоносителя, определяя, какой объём теплоносителя и какой температуры необходимо подать в систему отопления дома, согласно выстроенным ПИД-коэффициентам. ПИД-коэффициенты настраиваются инженерами сервисной службы, при настройки системы.

ПИД коэффициент – Пропорционально-интегрально-дифференцирующий коэффициент. Используется в системах автоматического регулирования для расчёта управляющего сигнала с целью получения высокой точности процесса.

Схемы автоматизации тепловых сетей.

Первый контур отопления – 150/70 °C

Второй контур отопления – 95/70 °C

Варианты расположения датчиков температуры САР.

Оптимальный вариант
установки датчиков температуры

Не корректный вариант
установки датчиков температуры

Сервисное и техническое обслуживание САР, АСУ ТП.

  • корректировка настроек день/ночь, выходной/рабочий день
  • смазка подвижных механизмов клапанов
  • проверка работы обратных клапанов, запорной арматуры
  • в ручном режиме контрольное управление клапанами, насосами
  • сверка показаний датчиков температуры с эталонным
  • анализ архивных данных
  • поддержание настоек системы автоматики в заданных техническими условиями пределах
  • диагностика технического состояния и предупреждение отказов систем управления и оборудования

Рядом с узлом располагается схема теплового пункта формата А3 и инструкция по эксплуатации САР.

При грамотной организации процесса обслуживания АСУ ТП возможен переход от системы планово-предупредительных ремонтов к проведению работ в соответствии с реальным состоянием оборудования.

Стоимость сервисного обслуживание 480 руб./мес.

Получить консультацию сервис-инженера!

Разработка и согласование проектов

системы автоматической регулировки отопления

Потребители, которые подключены к центральному теплоснабжению, должны уведомлять ресурсоснабжающую организацию о внесении изменений в тепловом узле или ИТП.

Теплоснабжающие организации требуют согласования с ними проектов для установки систем автоматизированной регулировки на отопление.

Предлагаем услуги по проектированию автоматизированных систем регулирования потребления тепловой энергии на отоплении в сфере ЖКХ, подключенных к центральному теплоснабжению.

Компания «АТК» специализируется на разработке и согласовании проектов автоматических систем регулирования, потребления теплоносителя в ресурсоснабжающих организациях для следующих потребителей:

  • многоквартирных жилых домов (ТСЖ, МКД, ТСН, УК)
  • офисных центров
  • промышленных предприятий, заводов
  • зданий бюджетной сферы (школ, детских садов, гимназии)

В чём особенность ЖКХ: Проектно-техническую документацию необходимо согласовывать с множеством организаций: АХССО, РОСТЕХНАДЗОР, ПСК, ТГК, НОВОГОР. Выдерживать проверки КРУ.

В каждой сфере есть свои особенности. Наши клиенты считают нас классными специалистами в сфере ЖКХ. В подтверждение этого их добрые отзывы.

Стоимость проектирования автоматической регулировки зависит от количества контуров, объёма здания, сложности монтажа, температурного графика (150/70 или 95/70).

В проекте на регулировку теплопотребления, предлагаем комплексное решение задач: диспетчеризации, удалённого управления системой, настройке регулятора, инструкция для Вашего обслуживающего персонала, обучение Ваших сотрудников.

Как рассчитать систему вентиляции. Расчетная температура для проектирования вентиляции

Вентиляция предназначена для обеспечения комфортного самочувствия посетителей или жильцов помещения за счет замены «отработанного» воздуха на свежий.

На этапе проектирования очень важен правильный расчет вентиляции.

Установка вентиляционных систем в помещении помогает решить вопрос удаления из комнаты или здания «отработанного» воздуха и замены его свежим с улицы. Грамотные системы вентиляции не должны:

  • создавать ситуацию, при которой работа вентиляционной системы не выполняется из-за простоя воздушных масс,
  • допускать слишком мощную работу систем вентиляции, при которой объем приходящего и выходящего воздуха различается, создавая сквозняк.

В основе качественной и оптимальной по мощности бытовой вентиляции (то же относится и к процессу проектирования системы промышленной вентиляции) лежит грамотный расчет таких систем, не допускающий остановки воздухообмена в результате работы вентилятора и не допускающей, чтобы вентилятор создавал сквозняк.

Зачем нужен расчет оптимальной мощности для системы вентиляции?

Расчет системы проводится перед подбором вентиляторов и другого оборудования. Расчеты направлены на определение основных параметров будущей системы вентиляции:

  • расход воздуха вентиляторами;
  • рабочее давление для вентиляционных установок в помещении;
  • мощность нагревающего элемента – калорифера вентиляционных систем;
  • площадь сечения воздуховодов в будущей системе.

Для расчета будущей вентиляции необходимо знать следующие параметры объекта:

  • площадь помещения и высота потолка;
  • назначение объекта – в зависимости от того, проводим ли мы расчет в жилом доме или производственном здании, будет меняться количество и мощность вентиляционного оборудования – от бытового вентилятора до сложных промышленных систем;
  • количество человек, живущих или работающих на той пощади, куда установят систему.

Как посчитать вентиляцию с помощью СНиП?

Правила СНиП указывают необходимую кратность воздухообмена для систем – кратность воздухообмена устанавливается в соответствии с типом объекта. Перед тем, как рассчитать вентиляцию, необходимо установить точную цифру для систем объекта – от 1 в случае бытовых систем, до 3, если производится расчет необходимой производственной мощности промышленных совмещенных общеобменных и локальных систем.

Также используется для расчета вентиляции калькулятор. На нашем сайте представлен калькулятор, помогающий посчитать параметры общеобменных систем онлайн.

Расчет потребного воздухообмена при общеобменной вентиляции.

Если перед специалистами, выполняющими расчет мощности будущей системы, стоит не просто вопрос «Как рассчитать вентиляцию?», но и задача рассчитать потребный (необходимый) воздухообмен, то следует вооружиться следующими замерами:

  • длина, ширина и высота потолков в помещении – при проектировании вентиляции расчет основывается на объеме вентилируемого объекта;
  • мощность оборудования системы, для которой определяется потребный (необходимый) воздухообмен;
  • категория сложности работы – методика расчета и конечный результат зависимы от условий, в которых система вентиляции эксплуатируется;
  • тип вредного вещества и количество его выделения;
  • предельная допустимая концентрация (ПДК) вредного вещества, удалением которого занимаются системы воздухообмена;
  • количество человек, работающих на площади, для которой требуется рассчитать будущую вентиляцию.

Допустим, расчет потребного воздухообмена начинается со следующих данных:

Мощность оборудования систем вентиляции

Категория тяжести работы

Тип вредного вещества

Количество вредного вещества

Первоначально подсчет потребного (необходимого) воздухообмена требует найти расход приточного воздуха, необходимый для отвода избыточной теплоты. Формула:

  • c – теплоемкость воздуха (мы возьмем с = 1,2 кДж / (кг * о С)),
  • p – плотность воздуха, кг/м 3 ;
  • tуд – температура воздуха, удаляемого из объекта;
  • tпр – расчетная температура воздуха из притока (при этом расчетная температура наружного воздуха, tпр, больше температуры в рабочей зоне, tуд, на 5 о С).

Плотность воздуха зависит от расчетной температуры наружного воздуха и определяется по формуле:

Допустим, для нашей системы значение расчетной температуры наружного воздуха tпр = 22,3 о С, тогда tуд = 27,3 о С. Тогда плотность воздуха p = 353 / (273 + 22,3) = 1,2 кг/м 3 .

Второй этап подсчета необходимого воздуха для общеобменной вентиляции – это определение избыточного количества теплоты Qизб.

Расчет воздухообмена в это части происходит по формуле:

  • Qр – теплота, поступающая от различных источников, кДж/ч;
  • Qэо – теплота, выделяемая при работе электродвигателей.

Количество теплоты от электрооборудования, необходимое для определения мощности вентиляции, определяется по формуле:

Qэо = 352 * B * N, где:

  • B – коэффициент загрузки оборудования (расчет будущей системы отталкивается от коэффициента загрузки 0,25-0,35, в нашем случае примем его равным 0,35);
  • N – общая мощность электрооборудования (в нашем случае мощность оборудования равна 50).

То есть, Qэо = 352 * 0,35 * 50 = 6160кДж/ч.

Определение для общеобменной вентиляции теплоты от других источников, Qр, происходит по следующей формуле:

  • N – число работников на объекте, для которого производится расчет мощности вентиляции (в нашем случае определение мощности вентиляции происходит для 50 сотрудников);
  • Кр – теплота, выделяемая одним человеком, кДж. Так как тип работы определен как легкий, то для расчета будущей системы возьмем Кр = 300кДж.

Тогда количество тепла из других источников, необходимое для расчета оптимальной по мощностям и энергопотреблению системы, равно Qр = 50 * 300 = 15000кДж/ч.

Соответственно, избыточное количество теплоты, требуемое для расчета мощностей проектируемой вентиляционной системы равно Qизб = Qэо + Qр = 6160 + 15000 = 21160кДж/ч.

Расход приточного воздуха для проектируемой вентиляции, необходимый для отвода избыточной теплоты, можно посчитать по формуле:

то есть, для нашего случая расход приточного наружного воздуха составляет:

L = 21160 / (1,2 * 1,2 * 5) = 2939 м 3 /ч.

Расчет системы вентиляции и потребного (необходимого) воздухообмена для удаления вредных веществ.

Теперь необходимо рассчитать мощность системы, необходимую для удаления вредных веществ.

Расчет вентиляционной системы для вредных веществ производится по формуле:

  • G – количество выделяемых вредных веществ, удаляемых системой вентиляции (в нашем случае, это – металлическая пыль с мощностью выброса 5000мг/ч);
  • qуд – концентрация вредных веществ в удаляемом системой вентиляции воздухе;
  • qпр – концентрация вредных веществ в приточном воздухе системы.

Концентрация вредных веществ в удаляемом системой воздухе, qуд, не должно превышать ПДК. То есть при расчете для нашей системы, qуд = 6мг/м 3 . Концентрация вредных веществ в приточном воздухе не должна превышать 0,3 от ПДК. То есть, при расчете проектируемой общеобменной системы вентиляции qпр = 0,3 * 6 = 1,8 мг/м 3 .

Такая расчетная методика для проектирования вентиляции дает нам необходимую мощность будущих систем, равную:

L2 = 5000 / (6 – 1,8) = 1190 м 3 /ч.

Потребный (необходимый) воздухообмен рассчитывается по формуле:

  • L – расход приточного воздуха для удаления вредных веществ системой общеоменной вентиляции;
  • V – объем объекта.

k = 1190 / (20 * 10 * 5) = 1,19.

Расчет воздухообмена в заданных нами условиях показал, что:

  • расход приточного воздуха (наружного) в час составляет около 1200 м 3 , что должно учитываться оборудованием общеобменных систем
  • необходимая кратность воздухообмена равна 1,19.

Показатели расчетной температуры наружного воздуха.

Показатели расчетной температуры наружного воздуха содержатся в действующей редакции СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование».

Значение расчетной температуры наружного воздуха устанавливается для разных городов России и используется для проектирования отопления, вентиляции. Расчетная температура наружного воздуха для системы отопления – это средняя температура холодной пятидневки, использующаяся для расчета отопления. Это средняя температура наиболее холодных пятидневок за 8 самых холодных зим за последние 50 лет.

Такой расчет отопительных систем позволяет спроектировать вентиляционные установки (если систему затачивают под задачи отопления) так, чтобы они были готовы к сильным морозам, которые случаются раз в несколько лет. Еще такой расчет систем позволяет посчитать вентиляцию, спроектировать и установить ее без лишних затрат.

Температура наружного воздуха – один из климатических факторов среды, знание которых необходимо для оптимального подбора материалов для строительных конструкций. Расчетная наружная температура необходима для правильного подбора материалов и построения вентиляции помещения, которые смогут защищать здание от низкой температуры, дождя, ветра, снега. Чтобы рассчитать будущую вентиляцию и сделать дом теплым, необходимо учитывать расчетную температуру внешнего воздуха.

Расчет вентиляционной системы и выбор материалов для наружных ограждений требуют знания расчетной температуры наружного воздуха:

  • для легких наружных ограждений нужна абсолютно минимальная температура наружного воздуха;
  • для ограждений малой массивности – среднюю наружную температуру наиболее холодных суток;
  • для ограждений средней массивности – среднюю из средних расчетных температур для проектирования (такая температура для наружных заграждений берется из наиболее холодных суток и наиболее холодной пятидневки);
  • для массивных ограждений берется средняя температура для проектирования вентиляции из наиболее холодной пятидневки;
  • для перекрытий над подвалами и подпольями принимают среднюю температуру, зафиксированную для наружного воздуха в наиболее холодную пятидневку. Для подвальных перекрытий наружное состояние воздуха берется независимо от массивности ограждения.

Различия между температурами и другими показателями воздуха наружного нахождения необходимо учитывать для того, чтобы рассчитать и правильно выбрать теплозащиту ограждений. Потери тепла через заграждения здания в течение для происходят неравномерно, ночью, когда расчетный наружный воздух имеет меньшую температуру, стены и другие ограждения быстрее охлаждаются по толщине.

Для охлаждающих ограждений большой инерционности (например, из бревенчатого сруба) показателя расчетной температуры наружного воздуха берутся за период в 5 дней – такой срок достаточен для того, чтобы воздух внутри охладился максимально. Так проектировщики будут знать, как рассчитать вентиляцию и отопление с учетом наименьшей возможной температуры.

Для того, чтобы рассчитать вентиляцию, нужно взять показатели расчетной температуры наружного воздуха из СНиП 2.01.01-82 «строительная климатология и геофизика». Здесь приведены расчетные температуры наружного воздуха для некоторых городов России.

Город, для которого установлено значение расчетной температуры наружного воздуха

Среднее значение расчетной температуры наружного воздуха, о С

Среднее значение зимней расчетной температуры наружного воздуха для проектирования отопления

Среднее значение зимней расчетной температуры наружного воздуха для расчета вентиляции

Среднее значение расчетной температуры наружного воздуха для отопительного периода

Читайте также:  Химическая очистка систем отопления, прочистка труб своими руками: инструкция, фото и видео-уроки, цена
Добавить комментарий